Metamath Proof Explorer


Theorem hvadd4i

Description: Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1
|- A e. ~H
hvass.2
|- B e. ~H
hvass.3
|- C e. ~H
hvadd4.4
|- D e. ~H
Assertion hvadd4i
|- ( ( A +h B ) +h ( C +h D ) ) = ( ( A +h C ) +h ( B +h D ) )

Proof

Step Hyp Ref Expression
1 hvass.1
 |-  A e. ~H
2 hvass.2
 |-  B e. ~H
3 hvass.3
 |-  C e. ~H
4 hvadd4.4
 |-  D e. ~H
5 hvadd4
 |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) +h ( C +h D ) ) = ( ( A +h C ) +h ( B +h D ) ) )
6 1 2 3 4 5 mp4an
 |-  ( ( A +h B ) +h ( C +h D ) ) = ( ( A +h C ) +h ( B +h D ) )