| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvnegdi.1 |  |-  A e. ~H | 
						
							| 2 |  | hvnegdi.2 |  |-  B e. ~H | 
						
							| 3 |  | hvaddcan.3 |  |-  C e. ~H | 
						
							| 4 |  | oveq1 |  |-  ( ( A +h B ) = ( A +h C ) -> ( ( A +h B ) +h ( -u 1 .h A ) ) = ( ( A +h C ) +h ( -u 1 .h A ) ) ) | 
						
							| 5 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 6 | 5 1 | hvmulcli |  |-  ( -u 1 .h A ) e. ~H | 
						
							| 7 | 1 2 6 | hvadd32i |  |-  ( ( A +h B ) +h ( -u 1 .h A ) ) = ( ( A +h ( -u 1 .h A ) ) +h B ) | 
						
							| 8 | 1 | hvnegidi |  |-  ( A +h ( -u 1 .h A ) ) = 0h | 
						
							| 9 | 8 | oveq1i |  |-  ( ( A +h ( -u 1 .h A ) ) +h B ) = ( 0h +h B ) | 
						
							| 10 | 2 | hvaddlidi |  |-  ( 0h +h B ) = B | 
						
							| 11 | 7 9 10 | 3eqtri |  |-  ( ( A +h B ) +h ( -u 1 .h A ) ) = B | 
						
							| 12 | 1 3 6 | hvadd32i |  |-  ( ( A +h C ) +h ( -u 1 .h A ) ) = ( ( A +h ( -u 1 .h A ) ) +h C ) | 
						
							| 13 | 8 | oveq1i |  |-  ( ( A +h ( -u 1 .h A ) ) +h C ) = ( 0h +h C ) | 
						
							| 14 | 3 | hvaddlidi |  |-  ( 0h +h C ) = C | 
						
							| 15 | 12 13 14 | 3eqtri |  |-  ( ( A +h C ) +h ( -u 1 .h A ) ) = C | 
						
							| 16 | 4 11 15 | 3eqtr3g |  |-  ( ( A +h B ) = ( A +h C ) -> B = C ) | 
						
							| 17 |  | oveq2 |  |-  ( B = C -> ( A +h B ) = ( A +h C ) ) | 
						
							| 18 | 16 17 | impbii |  |-  ( ( A +h B ) = ( A +h C ) <-> B = C ) |