Step |
Hyp |
Ref |
Expression |
1 |
|
hvnegdi.1 |
|- A e. ~H |
2 |
|
hvnegdi.2 |
|- B e. ~H |
3 |
|
hvaddcan.3 |
|- C e. ~H |
4 |
|
oveq1 |
|- ( ( A +h B ) = ( A +h C ) -> ( ( A +h B ) +h ( -u 1 .h A ) ) = ( ( A +h C ) +h ( -u 1 .h A ) ) ) |
5 |
|
neg1cn |
|- -u 1 e. CC |
6 |
5 1
|
hvmulcli |
|- ( -u 1 .h A ) e. ~H |
7 |
1 2 6
|
hvadd32i |
|- ( ( A +h B ) +h ( -u 1 .h A ) ) = ( ( A +h ( -u 1 .h A ) ) +h B ) |
8 |
1
|
hvnegidi |
|- ( A +h ( -u 1 .h A ) ) = 0h |
9 |
8
|
oveq1i |
|- ( ( A +h ( -u 1 .h A ) ) +h B ) = ( 0h +h B ) |
10 |
2
|
hvaddid2i |
|- ( 0h +h B ) = B |
11 |
7 9 10
|
3eqtri |
|- ( ( A +h B ) +h ( -u 1 .h A ) ) = B |
12 |
1 3 6
|
hvadd32i |
|- ( ( A +h C ) +h ( -u 1 .h A ) ) = ( ( A +h ( -u 1 .h A ) ) +h C ) |
13 |
8
|
oveq1i |
|- ( ( A +h ( -u 1 .h A ) ) +h C ) = ( 0h +h C ) |
14 |
3
|
hvaddid2i |
|- ( 0h +h C ) = C |
15 |
12 13 14
|
3eqtri |
|- ( ( A +h C ) +h ( -u 1 .h A ) ) = C |
16 |
4 11 15
|
3eqtr3g |
|- ( ( A +h B ) = ( A +h C ) -> B = C ) |
17 |
|
oveq2 |
|- ( B = C -> ( A +h B ) = ( A +h C ) ) |
18 |
16 17
|
impbii |
|- ( ( A +h B ) = ( A +h C ) <-> B = C ) |