| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvaddsubval |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) = ( A -h ( -u 1 .h B ) ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> ( A -h ( -u 1 .h B ) ) = 0h ) ) | 
						
							| 3 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 4 |  | hvmulcl |  |-  ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) | 
						
							| 5 | 3 4 | mpan |  |-  ( B e. ~H -> ( -u 1 .h B ) e. ~H ) | 
						
							| 6 |  | hvsubeq0 |  |-  ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( ( A -h ( -u 1 .h B ) ) = 0h <-> A = ( -u 1 .h B ) ) ) | 
						
							| 7 | 5 6 | sylan2 |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h ( -u 1 .h B ) ) = 0h <-> A = ( -u 1 .h B ) ) ) | 
						
							| 8 | 2 7 | bitrd |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> A = ( -u 1 .h B ) ) ) |