Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvaddid2 | |- ( A e. ~H -> ( 0h +h A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | |- 0h e. ~H |
|
2 | ax-hvcom | |- ( ( A e. ~H /\ 0h e. ~H ) -> ( A +h 0h ) = ( 0h +h A ) ) |
|
3 | 1 2 | mpan2 | |- ( A e. ~H -> ( A +h 0h ) = ( 0h +h A ) ) |
4 | ax-hvaddid | |- ( A e. ~H -> ( A +h 0h ) = A ) |
|
5 | 3 4 | eqtr3d | |- ( A e. ~H -> ( 0h +h A ) = A ) |