| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 2 |  | hvmulcl |  |-  ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) | 
						
							| 3 | 1 2 | mpan |  |-  ( C e. ~H -> ( -u 1 .h C ) e. ~H ) | 
						
							| 4 |  | hvadd12 |  |-  ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( A +h ( B +h ( -u 1 .h C ) ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) | 
						
							| 5 | 3 4 | syl3an3 |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B +h ( -u 1 .h C ) ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) | 
						
							| 6 |  | hvsubval |  |-  ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) | 
						
							| 9 |  | hvsubval |  |-  ( ( A e. ~H /\ C e. ~H ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( A e. ~H /\ C e. ~H ) -> ( B +h ( A -h C ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B +h ( A -h C ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) | 
						
							| 12 | 5 8 11 | 3eqtr4d |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( B +h ( A -h C ) ) ) |