Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
|- -u 1 e. CC |
2 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) |
3 |
1 2
|
mpan |
|- ( C e. ~H -> ( -u 1 .h C ) e. ~H ) |
4 |
|
hvadd12 |
|- ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( A +h ( B +h ( -u 1 .h C ) ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) |
5 |
3 4
|
syl3an3 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B +h ( -u 1 .h C ) ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) |
6 |
|
hvsubval |
|- ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
7 |
6
|
oveq2d |
|- ( ( B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
8 |
7
|
3adant1 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
9 |
|
hvsubval |
|- ( ( A e. ~H /\ C e. ~H ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) ) |
10 |
9
|
oveq2d |
|- ( ( A e. ~H /\ C e. ~H ) -> ( B +h ( A -h C ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) |
11 |
10
|
3adant2 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B +h ( A -h C ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) ) |
12 |
5 8 11
|
3eqtr4d |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( B +h ( A -h C ) ) ) |