Metamath Proof Explorer


Theorem hvaddsub12

Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvaddsub12
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( B +h ( A -h C ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn
 |-  -u 1 e. CC
2 hvmulcl
 |-  ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H )
3 1 2 mpan
 |-  ( C e. ~H -> ( -u 1 .h C ) e. ~H )
4 hvadd12
 |-  ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( A +h ( B +h ( -u 1 .h C ) ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) )
5 3 4 syl3an3
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B +h ( -u 1 .h C ) ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) )
6 hvsubval
 |-  ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) )
7 6 oveq2d
 |-  ( ( B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) )
8 7 3adant1
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) )
9 hvsubval
 |-  ( ( A e. ~H /\ C e. ~H ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) )
10 9 oveq2d
 |-  ( ( A e. ~H /\ C e. ~H ) -> ( B +h ( A -h C ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) )
11 10 3adant2
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B +h ( A -h C ) ) = ( B +h ( A +h ( -u 1 .h C ) ) ) )
12 5 8 11 3eqtr4d
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( B +h ( A -h C ) ) )