Metamath Proof Explorer


Theorem hvaddsubass

Description: Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Assertion hvaddsubass
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( A +h ( B -h C ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn
 |-  -u 1 e. CC
2 hvmulcl
 |-  ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H )
3 1 2 mpan
 |-  ( C e. ~H -> ( -u 1 .h C ) e. ~H )
4 ax-hvass
 |-  ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) )
5 3 4 syl3an3
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) )
6 hvaddcl
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H )
7 hvsubval
 |-  ( ( ( A +h B ) e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( ( A +h B ) +h ( -u 1 .h C ) ) )
8 6 7 stoic3
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( ( A +h B ) +h ( -u 1 .h C ) ) )
9 hvsubval
 |-  ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) )
10 9 3adant1
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) )
11 10 oveq2d
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) )
12 5 8 11 3eqtr4d
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( A +h ( B -h C ) ) )