| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 2 |  | hvmulcl |  |-  ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) | 
						
							| 3 | 1 2 | mpan |  |-  ( B e. ~H -> ( -u 1 .h B ) e. ~H ) | 
						
							| 4 |  | hvsubval |  |-  ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( A -h ( -u 1 .h B ) ) = ( A +h ( -u 1 .h ( -u 1 .h B ) ) ) ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h ( -u 1 .h B ) ) = ( A +h ( -u 1 .h ( -u 1 .h B ) ) ) ) | 
						
							| 6 |  | hvm1neg |  |-  ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h ( -u 1 .h B ) ) = ( -u -u 1 .h B ) ) | 
						
							| 7 | 1 6 | mpan |  |-  ( B e. ~H -> ( -u 1 .h ( -u 1 .h B ) ) = ( -u -u 1 .h B ) ) | 
						
							| 8 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 9 | 8 | oveq1i |  |-  ( -u -u 1 .h B ) = ( 1 .h B ) | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( B e. ~H -> ( -u 1 .h ( -u 1 .h B ) ) = ( 1 .h B ) ) | 
						
							| 11 |  | ax-hvmulid |  |-  ( B e. ~H -> ( 1 .h B ) = B ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( B e. ~H -> ( -u 1 .h ( -u 1 .h B ) ) = B ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( -u 1 .h B ) ) = B ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( -u 1 .h ( -u 1 .h B ) ) ) = ( A +h B ) ) | 
						
							| 15 | 5 14 | eqtr2d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) = ( A -h ( -u 1 .h B ) ) ) |