Metamath Proof Explorer


Theorem hvassi

Description: Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1
|- A e. ~H
hvass.2
|- B e. ~H
hvass.3
|- C e. ~H
Assertion hvassi
|- ( ( A +h B ) +h C ) = ( A +h ( B +h C ) )

Proof

Step Hyp Ref Expression
1 hvass.1
 |-  A e. ~H
2 hvass.2
 |-  B e. ~H
3 hvass.3
 |-  C e. ~H
4 ax-hvass
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( A +h ( B +h C ) ) )
5 1 2 3 4 mp3an
 |-  ( ( A +h B ) +h C ) = ( A +h ( B +h C ) )