Metamath Proof Explorer


Theorem hvcomi

Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvaddcl.1
|- A e. ~H
hvaddcl.2
|- B e. ~H
Assertion hvcomi
|- ( A +h B ) = ( B +h A )

Proof

Step Hyp Ref Expression
1 hvaddcl.1
 |-  A e. ~H
2 hvaddcl.2
 |-  B e. ~H
3 ax-hvcom
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) = ( B +h A ) )
4 1 2 3 mp2an
 |-  ( A +h B ) = ( B +h A )