Metamath Proof Explorer


Theorem hvdistr1i

Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvdistr1.1
|- A e. CC
hvdistr1.2
|- B e. ~H
hvdistr1.3
|- C e. ~H
Assertion hvdistr1i
|- ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) )

Proof

Step Hyp Ref Expression
1 hvdistr1.1
 |-  A e. CC
2 hvdistr1.2
 |-  B e. ~H
3 hvdistr1.3
 |-  C e. ~H
4 ax-hvdistr1
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) ) )
5 1 2 3 4 mp3an
 |-  ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) )