| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
| 2 |
1
|
oveq1d |
|- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = ( 0 .h 0h ) ) |
| 3 |
|
ax-hv0cl |
|- 0h e. ~H |
| 4 |
|
ax-hvmul0 |
|- ( 0h e. ~H -> ( 0 .h 0h ) = 0h ) |
| 5 |
3 4
|
ax-mp |
|- ( 0 .h 0h ) = 0h |
| 6 |
2 5
|
eqtrdi |
|- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = 0h ) |
| 7 |
|
0cn |
|- 0 e. CC |
| 8 |
|
ax-hvmulass |
|- ( ( A e. CC /\ 0 e. CC /\ 0h e. ~H ) -> ( ( A x. 0 ) .h 0h ) = ( A .h ( 0 .h 0h ) ) ) |
| 9 |
7 3 8
|
mp3an23 |
|- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = ( A .h ( 0 .h 0h ) ) ) |
| 10 |
6 9
|
eqtr3d |
|- ( A e. CC -> 0h = ( A .h ( 0 .h 0h ) ) ) |
| 11 |
5
|
oveq2i |
|- ( A .h ( 0 .h 0h ) ) = ( A .h 0h ) |
| 12 |
10 11
|
eqtr2di |
|- ( A e. CC -> ( A .h 0h ) = 0h ) |