Step |
Hyp |
Ref |
Expression |
1 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
2 |
1
|
oveq1d |
|- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = ( 0 .h 0h ) ) |
3 |
|
ax-hv0cl |
|- 0h e. ~H |
4 |
|
ax-hvmul0 |
|- ( 0h e. ~H -> ( 0 .h 0h ) = 0h ) |
5 |
3 4
|
ax-mp |
|- ( 0 .h 0h ) = 0h |
6 |
2 5
|
eqtrdi |
|- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = 0h ) |
7 |
|
0cn |
|- 0 e. CC |
8 |
|
ax-hvmulass |
|- ( ( A e. CC /\ 0 e. CC /\ 0h e. ~H ) -> ( ( A x. 0 ) .h 0h ) = ( A .h ( 0 .h 0h ) ) ) |
9 |
7 3 8
|
mp3an23 |
|- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = ( A .h ( 0 .h 0h ) ) ) |
10 |
6 9
|
eqtr3d |
|- ( A e. CC -> 0h = ( A .h ( 0 .h 0h ) ) ) |
11 |
5
|
oveq2i |
|- ( A .h ( 0 .h 0h ) ) = ( A .h 0h ) |
12 |
10 11
|
eqtr2di |
|- ( A e. CC -> ( A .h 0h ) = 0h ) |