Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hvmulcom.1 | |- A e. CC |
|
hvmulcom.2 | |- B e. CC |
||
hvmulcom.3 | |- C e. ~H |
||
Assertion | hvmul2negi | |- ( -u A .h ( -u B .h C ) ) = ( A .h ( B .h C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | |- A e. CC |
|
2 | hvmulcom.2 | |- B e. CC |
|
3 | hvmulcom.3 | |- C e. ~H |
|
4 | 1 2 | mul2negi | |- ( -u A x. -u B ) = ( A x. B ) |
5 | 4 | oveq1i | |- ( ( -u A x. -u B ) .h C ) = ( ( A x. B ) .h C ) |
6 | 1 | negcli | |- -u A e. CC |
7 | 2 | negcli | |- -u B e. CC |
8 | 6 7 3 | hvmulassi | |- ( ( -u A x. -u B ) .h C ) = ( -u A .h ( -u B .h C ) ) |
9 | 1 2 3 | hvmulassi | |- ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) |
10 | 5 8 9 | 3eqtr3i | |- ( -u A .h ( -u B .h C ) ) = ( A .h ( B .h C ) ) |