Metamath Proof Explorer


Theorem hvmul2negi

Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcom.1
|- A e. CC
hvmulcom.2
|- B e. CC
hvmulcom.3
|- C e. ~H
Assertion hvmul2negi
|- ( -u A .h ( -u B .h C ) ) = ( A .h ( B .h C ) )

Proof

Step Hyp Ref Expression
1 hvmulcom.1
 |-  A e. CC
2 hvmulcom.2
 |-  B e. CC
3 hvmulcom.3
 |-  C e. ~H
4 1 2 mul2negi
 |-  ( -u A x. -u B ) = ( A x. B )
5 4 oveq1i
 |-  ( ( -u A x. -u B ) .h C ) = ( ( A x. B ) .h C )
6 1 negcli
 |-  -u A e. CC
7 2 negcli
 |-  -u B e. CC
8 6 7 3 hvmulassi
 |-  ( ( -u A x. -u B ) .h C ) = ( -u A .h ( -u B .h C ) )
9 1 2 3 hvmulassi
 |-  ( ( A x. B ) .h C ) = ( A .h ( B .h C ) )
10 5 8 9 3eqtr3i
 |-  ( -u A .h ( -u B .h C ) ) = ( A .h ( B .h C ) )