Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
2 |
|
biorf |
|- ( -. A = 0 -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
3 |
1 2
|
sylbi |
|- ( A =/= 0 -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
4 |
3
|
ad2antlr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H ) -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
5 |
4
|
3adant3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
6 |
|
hvsubeq0 |
|- ( ( B e. ~H /\ C e. ~H ) -> ( ( B -h C ) = 0h <-> B = C ) ) |
7 |
6
|
3adant1 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( B -h C ) = 0h <-> B = C ) ) |
8 |
|
hvsubdistr1 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B -h C ) ) = ( ( A .h B ) -h ( A .h C ) ) ) |
9 |
8
|
eqeq1d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( ( A .h B ) -h ( A .h C ) ) = 0h ) ) |
10 |
|
hvsubcl |
|- ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) e. ~H ) |
11 |
|
hvmul0or |
|- ( ( A e. CC /\ ( B -h C ) e. ~H ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
12 |
10 11
|
sylan2 |
|- ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
13 |
12
|
3impb |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
14 |
|
hvmulcl |
|- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
15 |
14
|
3adant3 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h B ) e. ~H ) |
16 |
|
hvmulcl |
|- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
17 |
16
|
3adant2 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
18 |
|
hvsubeq0 |
|- ( ( ( A .h B ) e. ~H /\ ( A .h C ) e. ~H ) -> ( ( ( A .h B ) -h ( A .h C ) ) = 0h <-> ( A .h B ) = ( A .h C ) ) ) |
19 |
15 17 18
|
syl2anc |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( ( A .h B ) -h ( A .h C ) ) = 0h <-> ( A .h B ) = ( A .h C ) ) ) |
20 |
9 13 19
|
3bitr3d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A = 0 \/ ( B -h C ) = 0h ) <-> ( A .h B ) = ( A .h C ) ) ) |
21 |
20
|
3adant1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( A = 0 \/ ( B -h C ) = 0h ) <-> ( A .h B ) = ( A .h C ) ) ) |
22 |
5 7 21
|
3bitr3rd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) = ( A .h C ) <-> B = C ) ) |