Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
|- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
2 |
1
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
3 |
|
hvmulcl |
|- ( ( B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) |
4 |
3
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) |
5 |
|
hvsubeq0 |
|- ( ( ( A .h C ) e. ~H /\ ( B .h C ) e. ~H ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( A .h C ) = ( B .h C ) ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( A .h C ) = ( B .h C ) ) ) |
7 |
6
|
3adant3r |
|- ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( A .h C ) = ( B .h C ) ) ) |
8 |
|
hvsubdistr2 |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A - B ) .h C ) = ( ( A .h C ) -h ( B .h C ) ) ) |
9 |
8
|
eqeq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A - B ) .h C ) = 0h <-> ( ( A .h C ) -h ( B .h C ) ) = 0h ) ) |
10 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
11 |
|
hvmul0or |
|- ( ( ( A - B ) e. CC /\ C e. ~H ) -> ( ( ( A - B ) .h C ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
12 |
10 11
|
stoic3 |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A - B ) .h C ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
13 |
9 12
|
bitr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
14 |
13
|
3adant3r |
|- ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
15 |
|
df-ne |
|- ( C =/= 0h <-> -. C = 0h ) |
16 |
|
biorf |
|- ( -. C = 0h -> ( ( A - B ) = 0 <-> ( C = 0h \/ ( A - B ) = 0 ) ) ) |
17 |
|
orcom |
|- ( ( C = 0h \/ ( A - B ) = 0 ) <-> ( ( A - B ) = 0 \/ C = 0h ) ) |
18 |
16 17
|
bitrdi |
|- ( -. C = 0h -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
19 |
15 18
|
sylbi |
|- ( C =/= 0h -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
20 |
19
|
ad2antll |
|- ( ( B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
21 |
20
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) |
22 |
|
subeq0 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
23 |
22
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A - B ) = 0 <-> A = B ) ) |
24 |
14 21 23
|
3bitr2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> A = B ) ) |
25 |
7 24
|
bitr3d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A .h C ) = ( B .h C ) <-> A = B ) ) |