| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcl |  |-  ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) | 
						
							| 3 |  | hvmulcl |  |-  ( ( B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) | 
						
							| 5 |  | hvsubeq0 |  |-  ( ( ( A .h C ) e. ~H /\ ( B .h C ) e. ~H ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( A .h C ) = ( B .h C ) ) ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( A .h C ) = ( B .h C ) ) ) | 
						
							| 7 | 6 | 3adant3r |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( A .h C ) = ( B .h C ) ) ) | 
						
							| 8 |  | hvsubdistr2 |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A - B ) .h C ) = ( ( A .h C ) -h ( B .h C ) ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A - B ) .h C ) = 0h <-> ( ( A .h C ) -h ( B .h C ) ) = 0h ) ) | 
						
							| 10 |  | subcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 11 |  | hvmul0or |  |-  ( ( ( A - B ) e. CC /\ C e. ~H ) -> ( ( ( A - B ) .h C ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 12 | 10 11 | stoic3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A - B ) .h C ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 13 | 9 12 | bitr3d |  |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 14 | 13 | 3adant3r |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 15 |  | df-ne |  |-  ( C =/= 0h <-> -. C = 0h ) | 
						
							| 16 |  | biorf |  |-  ( -. C = 0h -> ( ( A - B ) = 0 <-> ( C = 0h \/ ( A - B ) = 0 ) ) ) | 
						
							| 17 |  | orcom |  |-  ( ( C = 0h \/ ( A - B ) = 0 ) <-> ( ( A - B ) = 0 \/ C = 0h ) ) | 
						
							| 18 | 16 17 | bitrdi |  |-  ( -. C = 0h -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 19 | 15 18 | sylbi |  |-  ( C =/= 0h -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 20 | 19 | ad2antll |  |-  ( ( B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 21 | 20 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A - B ) = 0 <-> ( ( A - B ) = 0 \/ C = 0h ) ) ) | 
						
							| 22 |  | subeq0 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A - B ) = 0 <-> A = B ) ) | 
						
							| 24 | 14 21 23 | 3bitr2d |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( ( A .h C ) -h ( B .h C ) ) = 0h <-> A = B ) ) | 
						
							| 25 | 7 24 | bitr3d |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. ~H /\ C =/= 0h ) ) -> ( ( A .h C ) = ( B .h C ) <-> A = B ) ) |