Metamath Proof Explorer


Theorem hvmulcli

Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcl.1
|- A e. CC
hvmulcl.2
|- B e. ~H
Assertion hvmulcli
|- ( A .h B ) e. ~H

Proof

Step Hyp Ref Expression
1 hvmulcl.1
 |-  A e. CC
2 hvmulcl.2
 |-  B e. ~H
3 hvmulcl
 |-  ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H )
4 1 2 3 mp2an
 |-  ( A .h B ) e. ~H