| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mulcom | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq1d | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) .h C ) = ( ( B x. A ) .h C ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant3 | 
							 |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( ( B x. A ) .h C ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ax-hvmulass | 
							 |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ax-hvmulass | 
							 |-  ( ( B e. CC /\ A e. CC /\ C e. ~H ) -> ( ( B x. A ) .h C ) = ( B .h ( A .h C ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3com12 | 
							 |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( B x. A ) .h C ) = ( B .h ( A .h C ) ) )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							3eqtr3d | 
							 |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h ( B .h C ) ) = ( B .h ( A .h C ) ) )  |