| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( -u 1 .h ( A -h B ) ) = ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h B ) ) ) | 
						
							| 3 |  | oveq2 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( B -h A ) = ( B -h if ( A e. ~H , A , 0h ) ) ) | 
						
							| 4 | 2 3 | eqeq12d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( -u 1 .h ( A -h B ) ) = ( B -h A ) <-> ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h B ) ) = ( B -h if ( A e. ~H , A , 0h ) ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h B ) ) = ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( B -h if ( A e. ~H , A , 0h ) ) = ( if ( B e. ~H , B , 0h ) -h if ( A e. ~H , A , 0h ) ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h B ) ) = ( B -h if ( A e. ~H , A , 0h ) ) <-> ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = ( if ( B e. ~H , B , 0h ) -h if ( A e. ~H , A , 0h ) ) ) ) | 
						
							| 9 |  | ifhvhv0 |  |-  if ( A e. ~H , A , 0h ) e. ~H | 
						
							| 10 |  | ifhvhv0 |  |-  if ( B e. ~H , B , 0h ) e. ~H | 
						
							| 11 | 9 10 | hvnegdii |  |-  ( -u 1 .h ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = ( if ( B e. ~H , B , 0h ) -h if ( A e. ~H , A , 0h ) ) | 
						
							| 12 | 4 8 11 | dedth2h |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( A -h B ) ) = ( B -h A ) ) |