| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvnegdi.1 |
|- A e. ~H |
| 2 |
|
hvnegdi.2 |
|- B e. ~H |
| 3 |
1 2
|
hvsubvali |
|- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 4 |
3
|
oveq2i |
|- ( -u 1 .h ( A -h B ) ) = ( -u 1 .h ( A +h ( -u 1 .h B ) ) ) |
| 5 |
|
neg1cn |
|- -u 1 e. CC |
| 6 |
5 2
|
hvmulcli |
|- ( -u 1 .h B ) e. ~H |
| 7 |
5 1 6
|
hvdistr1i |
|- ( -u 1 .h ( A +h ( -u 1 .h B ) ) ) = ( ( -u 1 .h A ) +h ( -u 1 .h ( -u 1 .h B ) ) ) |
| 8 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 9 |
8
|
oveq1i |
|- ( ( -u 1 x. -u 1 ) .h B ) = ( 1 .h B ) |
| 10 |
5 5 2
|
hvmulassi |
|- ( ( -u 1 x. -u 1 ) .h B ) = ( -u 1 .h ( -u 1 .h B ) ) |
| 11 |
|
ax-hvmulid |
|- ( B e. ~H -> ( 1 .h B ) = B ) |
| 12 |
2 11
|
ax-mp |
|- ( 1 .h B ) = B |
| 13 |
9 10 12
|
3eqtr3i |
|- ( -u 1 .h ( -u 1 .h B ) ) = B |
| 14 |
13
|
oveq1i |
|- ( ( -u 1 .h ( -u 1 .h B ) ) +h ( -u 1 .h A ) ) = ( B +h ( -u 1 .h A ) ) |
| 15 |
5 1
|
hvmulcli |
|- ( -u 1 .h A ) e. ~H |
| 16 |
5 6
|
hvmulcli |
|- ( -u 1 .h ( -u 1 .h B ) ) e. ~H |
| 17 |
15 16
|
hvcomi |
|- ( ( -u 1 .h A ) +h ( -u 1 .h ( -u 1 .h B ) ) ) = ( ( -u 1 .h ( -u 1 .h B ) ) +h ( -u 1 .h A ) ) |
| 18 |
2 1
|
hvsubvali |
|- ( B -h A ) = ( B +h ( -u 1 .h A ) ) |
| 19 |
14 17 18
|
3eqtr4i |
|- ( ( -u 1 .h A ) +h ( -u 1 .h ( -u 1 .h B ) ) ) = ( B -h A ) |
| 20 |
4 7 19
|
3eqtri |
|- ( -u 1 .h ( A -h B ) ) = ( B -h A ) |