Step |
Hyp |
Ref |
Expression |
1 |
|
hvaddcl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
2 |
|
hvsubval |
|- ( ( ( A +h B ) e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = ( ( A +h B ) +h ( -u 1 .h B ) ) ) |
3 |
1 2
|
sylancom |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = ( ( A +h B ) +h ( -u 1 .h B ) ) ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
6 |
4 5
|
mpan |
|- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
7 |
6
|
ancli |
|- ( B e. ~H -> ( B e. ~H /\ ( -u 1 .h B ) e. ~H ) ) |
8 |
|
ax-hvass |
|- ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) ) |
9 |
8
|
3expb |
|- ( ( A e. ~H /\ ( B e. ~H /\ ( -u 1 .h B ) e. ~H ) ) -> ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) ) |
10 |
7 9
|
sylan2 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) ) |
11 |
|
hvnegid |
|- ( B e. ~H -> ( B +h ( -u 1 .h B ) ) = 0h ) |
12 |
11
|
oveq2d |
|- ( B e. ~H -> ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h ) ) |
13 |
|
ax-hvaddid |
|- ( A e. ~H -> ( A +h 0h ) = A ) |
14 |
12 13
|
sylan9eqr |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B +h ( -u 1 .h B ) ) ) = A ) |
15 |
3 10 14
|
3eqtrd |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h B ) = A ) |