Metamath Proof Explorer


Theorem hvpncan2

Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan2
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B )

Proof

Step Hyp Ref Expression
1 ax-hvcom
 |-  ( ( B e. ~H /\ A e. ~H ) -> ( B +h A ) = ( A +h B ) )
2 1 oveq1d
 |-  ( ( B e. ~H /\ A e. ~H ) -> ( ( B +h A ) -h A ) = ( ( A +h B ) -h A ) )
3 hvpncan
 |-  ( ( B e. ~H /\ A e. ~H ) -> ( ( B +h A ) -h A ) = B )
4 2 3 eqtr3d
 |-  ( ( B e. ~H /\ A e. ~H ) -> ( ( A +h B ) -h A ) = B )
5 4 ancoms
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B )