Description: Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvpncan3 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B -h A ) ) = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvaddsubass | |- ( ( A e. ~H /\ B e. ~H /\ A e. ~H ) -> ( ( A +h B ) -h A ) = ( A +h ( B -h A ) ) ) | |
| 2 | 1 | 3anidm13 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = ( A +h ( B -h A ) ) ) | 
| 3 | hvpncan2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B ) | |
| 4 | 2 3 | eqtr3d | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B -h A ) ) = B ) |