Metamath Proof Explorer


Theorem hvpncan3

Description: Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan3
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B -h A ) ) = B )

Proof

Step Hyp Ref Expression
1 hvaddsubass
 |-  ( ( A e. ~H /\ B e. ~H /\ A e. ~H ) -> ( ( A +h B ) -h A ) = ( A +h ( B -h A ) ) )
2 1 3anidm13
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = ( A +h ( B -h A ) ) )
3 hvpncan2
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B )
4 2 3 eqtr3d
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B -h A ) ) = B )