Description: Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvpncan3 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B -h A ) ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddsubass | |- ( ( A e. ~H /\ B e. ~H /\ A e. ~H ) -> ( ( A +h B ) -h A ) = ( A +h ( B -h A ) ) ) |
|
2 | 1 | 3anidm13 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = ( A +h ( B -h A ) ) ) |
3 | hvpncan2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B ) |
|
4 | 2 3 | eqtr3d | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( B -h A ) ) = B ) |