| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 2 |  | hvsubval |  |-  ( ( A e. ~H /\ 0h e. ~H ) -> ( A -h 0h ) = ( A +h ( -u 1 .h 0h ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( A e. ~H -> ( A -h 0h ) = ( A +h ( -u 1 .h 0h ) ) ) | 
						
							| 4 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 5 |  | hvmul0 |  |-  ( -u 1 e. CC -> ( -u 1 .h 0h ) = 0h ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( -u 1 .h 0h ) = 0h | 
						
							| 7 | 6 | oveq2i |  |-  ( A +h ( -u 1 .h 0h ) ) = ( A +h 0h ) | 
						
							| 8 | 3 7 | eqtrdi |  |-  ( A e. ~H -> ( A -h 0h ) = ( A +h 0h ) ) | 
						
							| 9 |  | ax-hvaddid |  |-  ( A e. ~H -> ( A +h 0h ) = A ) | 
						
							| 10 | 8 9 | eqtrd |  |-  ( A e. ~H -> ( A -h 0h ) = A ) |