Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
|- 0h e. ~H |
2 |
|
hvsubval |
|- ( ( A e. ~H /\ 0h e. ~H ) -> ( A -h 0h ) = ( A +h ( -u 1 .h 0h ) ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. ~H -> ( A -h 0h ) = ( A +h ( -u 1 .h 0h ) ) ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
|
hvmul0 |
|- ( -u 1 e. CC -> ( -u 1 .h 0h ) = 0h ) |
6 |
4 5
|
ax-mp |
|- ( -u 1 .h 0h ) = 0h |
7 |
6
|
oveq2i |
|- ( A +h ( -u 1 .h 0h ) ) = ( A +h 0h ) |
8 |
3 7
|
eqtrdi |
|- ( A e. ~H -> ( A -h 0h ) = ( A +h 0h ) ) |
9 |
|
ax-hvaddid |
|- ( A e. ~H -> ( A +h 0h ) = A ) |
10 |
8 9
|
eqtrd |
|- ( A e. ~H -> ( A -h 0h ) = A ) |