Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
2 |
1
|
eqeq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) = C <-> ( if ( A e. ~H , A , 0h ) -h B ) = C ) ) |
3 |
|
eqeq2 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( B +h C ) = A <-> ( B +h C ) = if ( A e. ~H , A , 0h ) ) ) |
4 |
2 3
|
bibi12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) = C <-> ( B +h C ) = A ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) = C <-> ( B +h C ) = if ( A e. ~H , A , 0h ) ) ) ) |
5 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
6 |
5
|
eqeq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) = C <-> ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C ) ) |
7 |
|
oveq1 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( B +h C ) = ( if ( B e. ~H , B , 0h ) +h C ) ) |
8 |
7
|
eqeq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( B +h C ) = if ( A e. ~H , A , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) ) ) |
9 |
6 8
|
bibi12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) = C <-> ( B +h C ) = if ( A e. ~H , A , 0h ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C <-> ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) ) ) ) |
10 |
|
eqeq2 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C <-> ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = if ( C e. ~H , C , 0h ) ) ) |
11 |
|
oveq2 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( if ( B e. ~H , B , 0h ) +h C ) = ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) ) |
12 |
11
|
eqeq1d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) |
13 |
10 12
|
bibi12d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = C <-> ( if ( B e. ~H , B , 0h ) +h C ) = if ( A e. ~H , A , 0h ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = if ( C e. ~H , C , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) ) |
14 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
15 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
16 |
|
ifhvhv0 |
|- if ( C e. ~H , C , 0h ) e. ~H |
17 |
14 15 16
|
hvsubaddi |
|- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = if ( C e. ~H , C , 0h ) <-> ( if ( B e. ~H , B , 0h ) +h if ( C e. ~H , C , 0h ) ) = if ( A e. ~H , A , 0h ) ) |
18 |
4 9 13 17
|
dedth3h |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) = C <-> ( B +h C ) = A ) ) |