Step |
Hyp |
Ref |
Expression |
1 |
|
hvsubcl |
|- ( ( C e. ~H /\ A e. ~H ) -> ( C -h A ) e. ~H ) |
2 |
1
|
3adant3 |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C -h A ) e. ~H ) |
3 |
|
hvsubcl |
|- ( ( C e. ~H /\ B e. ~H ) -> ( C -h B ) e. ~H ) |
4 |
3
|
3adant2 |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C -h B ) e. ~H ) |
5 |
|
neg1cn |
|- -u 1 e. CC |
6 |
|
neg1ne0 |
|- -u 1 =/= 0 |
7 |
5 6
|
pm3.2i |
|- ( -u 1 e. CC /\ -u 1 =/= 0 ) |
8 |
|
hvmulcan |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( C -h A ) e. ~H /\ ( C -h B ) e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) |
9 |
7 8
|
mp3an1 |
|- ( ( ( C -h A ) e. ~H /\ ( C -h B ) e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) |
10 |
2 4 9
|
syl2anc |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) |
11 |
|
hvnegdi |
|- ( ( C e. ~H /\ A e. ~H ) -> ( -u 1 .h ( C -h A ) ) = ( A -h C ) ) |
12 |
11
|
3adant3 |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h A ) ) = ( A -h C ) ) |
13 |
|
hvnegdi |
|- ( ( C e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h B ) ) = ( B -h C ) ) |
14 |
13
|
3adant2 |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h B ) ) = ( B -h C ) ) |
15 |
12 14
|
eqeq12d |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( A -h C ) = ( B -h C ) ) ) |
16 |
|
hvsubcan |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( C -h A ) = ( C -h B ) <-> A = B ) ) |
17 |
10 15 16
|
3bitr3d |
|- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) |
18 |
17
|
3coml |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) |