| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvsubcl |  |-  ( ( C e. ~H /\ A e. ~H ) -> ( C -h A ) e. ~H ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C -h A ) e. ~H ) | 
						
							| 3 |  | hvsubcl |  |-  ( ( C e. ~H /\ B e. ~H ) -> ( C -h B ) e. ~H ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C -h B ) e. ~H ) | 
						
							| 5 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 6 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 7 | 5 6 | pm3.2i |  |-  ( -u 1 e. CC /\ -u 1 =/= 0 ) | 
						
							| 8 |  | hvmulcan |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( C -h A ) e. ~H /\ ( C -h B ) e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) | 
						
							| 9 | 7 8 | mp3an1 |  |-  ( ( ( C -h A ) e. ~H /\ ( C -h B ) e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) | 
						
							| 10 | 2 4 9 | syl2anc |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) | 
						
							| 11 |  | hvnegdi |  |-  ( ( C e. ~H /\ A e. ~H ) -> ( -u 1 .h ( C -h A ) ) = ( A -h C ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h A ) ) = ( A -h C ) ) | 
						
							| 13 |  | hvnegdi |  |-  ( ( C e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h B ) ) = ( B -h C ) ) | 
						
							| 14 | 13 | 3adant2 |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h B ) ) = ( B -h C ) ) | 
						
							| 15 | 12 14 | eqeq12d |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( A -h C ) = ( B -h C ) ) ) | 
						
							| 16 |  | hvsubcan |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( C -h A ) = ( C -h B ) <-> A = B ) ) | 
						
							| 17 | 10 15 16 | 3bitr3d |  |-  ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) | 
						
							| 18 | 17 | 3coml |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) |