| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvnegdi.1 |  |-  A e. ~H | 
						
							| 2 |  | hvnegdi.2 |  |-  B e. ~H | 
						
							| 3 | 1 2 | hvsubvali |  |-  ( A -h B ) = ( A +h ( -u 1 .h B ) ) | 
						
							| 4 | 3 | oveq2i |  |-  ( ( A +h B ) +h ( A -h B ) ) = ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) | 
						
							| 5 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 6 | 5 2 | hvmulcli |  |-  ( -u 1 .h B ) e. ~H | 
						
							| 7 | 1 2 1 6 | hvadd4i |  |-  ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) = ( ( A +h A ) +h ( B +h ( -u 1 .h B ) ) ) | 
						
							| 8 |  | hv2times |  |-  ( A e. ~H -> ( 2 .h A ) = ( A +h A ) ) | 
						
							| 9 | 1 8 | ax-mp |  |-  ( 2 .h A ) = ( A +h A ) | 
						
							| 10 | 9 | eqcomi |  |-  ( A +h A ) = ( 2 .h A ) | 
						
							| 11 | 2 | hvnegidi |  |-  ( B +h ( -u 1 .h B ) ) = 0h | 
						
							| 12 | 10 11 | oveq12i |  |-  ( ( A +h A ) +h ( B +h ( -u 1 .h B ) ) ) = ( ( 2 .h A ) +h 0h ) | 
						
							| 13 | 7 12 | eqtri |  |-  ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) = ( ( 2 .h A ) +h 0h ) | 
						
							| 14 |  | 2cn |  |-  2 e. CC | 
						
							| 15 | 14 1 | hvmulcli |  |-  ( 2 .h A ) e. ~H | 
						
							| 16 |  | ax-hvaddid |  |-  ( ( 2 .h A ) e. ~H -> ( ( 2 .h A ) +h 0h ) = ( 2 .h A ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( ( 2 .h A ) +h 0h ) = ( 2 .h A ) | 
						
							| 18 | 13 17 | eqtri |  |-  ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) = ( 2 .h A ) | 
						
							| 19 | 4 18 | eqtri |  |-  ( ( A +h B ) +h ( A -h B ) ) = ( 2 .h A ) |