Metamath Proof Explorer


Theorem hvsubcl

Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion hvsubcl
|- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H )

Proof

Step Hyp Ref Expression
1 hvsubval
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) )
2 neg1cn
 |-  -u 1 e. CC
3 hvmulcl
 |-  ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H )
4 2 3 mpan
 |-  ( B e. ~H -> ( -u 1 .h B ) e. ~H )
5 hvaddcl
 |-  ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( A +h ( -u 1 .h B ) ) e. ~H )
6 4 5 sylan2
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( -u 1 .h B ) ) e. ~H )
7 1 6 eqeltrd
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H )