Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvsubcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
|
2 | neg1cn | |- -u 1 e. CC |
|
3 | hvmulcl | |- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
|
4 | 2 3 | mpan | |- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
5 | hvaddcl | |- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( A +h ( -u 1 .h B ) ) e. ~H ) |
|
6 | 4 5 | sylan2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h ( -u 1 .h B ) ) e. ~H ) |
7 | 1 6 | eqeltrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |