Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
2 |
1
|
eqeq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) = 0h <-> ( if ( A e. ~H , A , 0h ) -h B ) = 0h ) ) |
3 |
|
eqeq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A = B <-> if ( A e. ~H , A , 0h ) = B ) ) |
4 |
2 3
|
bibi12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) = 0h <-> A = B ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) = 0h <-> if ( A e. ~H , A , 0h ) = B ) ) ) |
5 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
6 |
5
|
eqeq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) = 0h <-> ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = 0h ) ) |
7 |
|
eqeq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) = B <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) |
8 |
6 7
|
bibi12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) = 0h <-> if ( A e. ~H , A , 0h ) = B ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = 0h <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) ) |
9 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
10 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
11 |
9 10
|
hvsubeq0i |
|- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = 0h <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) |
12 |
4 8 11
|
dedth2h |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) = 0h <-> A = B ) ) |