| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hvnegdi.1 | 
							 |-  A e. ~H  | 
						
						
							| 2 | 
							
								
							 | 
							hvnegdi.2 | 
							 |-  B e. ~H  | 
						
						
							| 3 | 
							
								1 2
							 | 
							hvsubvali | 
							 |-  ( A -h B ) = ( A +h ( -u 1 .h B ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq1i | 
							 |-  ( ( A -h B ) = 0h <-> ( A +h ( -u 1 .h B ) ) = 0h )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( A +h ( -u 1 .h B ) ) = 0h -> ( ( A +h ( -u 1 .h B ) ) +h B ) = ( 0h +h B ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylbi | 
							 |-  ( ( A -h B ) = 0h -> ( ( A +h ( -u 1 .h B ) ) +h B ) = ( 0h +h B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							neg1cn | 
							 |-  -u 1 e. CC  | 
						
						
							| 8 | 
							
								7 2
							 | 
							hvmulcli | 
							 |-  ( -u 1 .h B ) e. ~H  | 
						
						
							| 9 | 
							
								1 8 2
							 | 
							hvadd32i | 
							 |-  ( ( A +h ( -u 1 .h B ) ) +h B ) = ( ( A +h B ) +h ( -u 1 .h B ) )  | 
						
						
							| 10 | 
							
								1 2 8
							 | 
							hvassi | 
							 |-  ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) )  | 
						
						
							| 11 | 
							
								2
							 | 
							hvnegidi | 
							 |-  ( B +h ( -u 1 .h B ) ) = 0h  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2i | 
							 |-  ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h )  | 
						
						
							| 13 | 
							
								
							 | 
							ax-hvaddid | 
							 |-  ( A e. ~H -> ( A +h 0h ) = A )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							ax-mp | 
							 |-  ( A +h 0h ) = A  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqtri | 
							 |-  ( A +h ( B +h ( -u 1 .h B ) ) ) = A  | 
						
						
							| 16 | 
							
								10 15
							 | 
							eqtri | 
							 |-  ( ( A +h B ) +h ( -u 1 .h B ) ) = A  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqtri | 
							 |-  ( ( A +h ( -u 1 .h B ) ) +h B ) = A  | 
						
						
							| 18 | 
							
								2
							 | 
							hvaddlidi | 
							 |-  ( 0h +h B ) = B  | 
						
						
							| 19 | 
							
								6 17 18
							 | 
							3eqtr3g | 
							 |-  ( ( A -h B ) = 0h -> A = B )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq1 | 
							 |-  ( A = B -> ( A -h B ) = ( B -h B ) )  | 
						
						
							| 21 | 
							
								
							 | 
							hvsubid | 
							 |-  ( B e. ~H -> ( B -h B ) = 0h )  | 
						
						
							| 22 | 
							
								2 21
							 | 
							ax-mp | 
							 |-  ( B -h B ) = 0h  | 
						
						
							| 23 | 
							
								20 22
							 | 
							eqtrdi | 
							 |-  ( A = B -> ( A -h B ) = 0h )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							impbii | 
							 |-  ( ( A -h B ) = 0h <-> A = B )  |