Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hvmulid |
|- ( A e. ~H -> ( 1 .h A ) = A ) |
2 |
1
|
oveq1d |
|- ( A e. ~H -> ( ( 1 .h A ) +h ( -u 1 .h A ) ) = ( A +h ( -u 1 .h A ) ) ) |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
|
ax-hvdistr2 |
|- ( ( 1 e. CC /\ -u 1 e. CC /\ A e. ~H ) -> ( ( 1 + -u 1 ) .h A ) = ( ( 1 .h A ) +h ( -u 1 .h A ) ) ) |
6 |
3 4 5
|
mp3an12 |
|- ( A e. ~H -> ( ( 1 + -u 1 ) .h A ) = ( ( 1 .h A ) +h ( -u 1 .h A ) ) ) |
7 |
|
hvsubval |
|- ( ( A e. ~H /\ A e. ~H ) -> ( A -h A ) = ( A +h ( -u 1 .h A ) ) ) |
8 |
7
|
anidms |
|- ( A e. ~H -> ( A -h A ) = ( A +h ( -u 1 .h A ) ) ) |
9 |
2 6 8
|
3eqtr4rd |
|- ( A e. ~H -> ( A -h A ) = ( ( 1 + -u 1 ) .h A ) ) |
10 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
11 |
10
|
oveq1i |
|- ( ( 1 + -u 1 ) .h A ) = ( 0 .h A ) |
12 |
9 11
|
eqtrdi |
|- ( A e. ~H -> ( A -h A ) = ( 0 .h A ) ) |
13 |
|
ax-hvmul0 |
|- ( A e. ~H -> ( 0 .h A ) = 0h ) |
14 |
12 13
|
eqtrd |
|- ( A e. ~H -> ( A -h A ) = 0h ) |