| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hvmulid |  |-  ( A e. ~H -> ( 1 .h A ) = A ) | 
						
							| 2 | 1 | oveq1d |  |-  ( A e. ~H -> ( ( 1 .h A ) +h ( -u 1 .h A ) ) = ( A +h ( -u 1 .h A ) ) ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 5 |  | ax-hvdistr2 |  |-  ( ( 1 e. CC /\ -u 1 e. CC /\ A e. ~H ) -> ( ( 1 + -u 1 ) .h A ) = ( ( 1 .h A ) +h ( -u 1 .h A ) ) ) | 
						
							| 6 | 3 4 5 | mp3an12 |  |-  ( A e. ~H -> ( ( 1 + -u 1 ) .h A ) = ( ( 1 .h A ) +h ( -u 1 .h A ) ) ) | 
						
							| 7 |  | hvsubval |  |-  ( ( A e. ~H /\ A e. ~H ) -> ( A -h A ) = ( A +h ( -u 1 .h A ) ) ) | 
						
							| 8 | 7 | anidms |  |-  ( A e. ~H -> ( A -h A ) = ( A +h ( -u 1 .h A ) ) ) | 
						
							| 9 | 2 6 8 | 3eqtr4rd |  |-  ( A e. ~H -> ( A -h A ) = ( ( 1 + -u 1 ) .h A ) ) | 
						
							| 10 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( 1 + -u 1 ) .h A ) = ( 0 .h A ) | 
						
							| 12 | 9 11 | eqtrdi |  |-  ( A e. ~H -> ( A -h A ) = ( 0 .h A ) ) | 
						
							| 13 |  | ax-hvmul0 |  |-  ( A e. ~H -> ( 0 .h A ) = 0h ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( A e. ~H -> ( A -h A ) = 0h ) |