Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
2 |
1
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) ) |
3 |
|
oveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A -h C ) = ( if ( A e. ~H , A , 0h ) -h C ) ) |
4 |
3
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h C ) -h ( B -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) ) |
5 |
2 4
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) ) ) |
6 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
7 |
6
|
oveq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) ) |
8 |
|
oveq1 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( B -h D ) = ( if ( B e. ~H , B , 0h ) -h D ) ) |
9 |
8
|
oveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) |
10 |
7 9
|
eqeq12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( B -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) ) |
11 |
|
oveq1 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( C -h D ) = ( if ( C e. ~H , C , 0h ) -h D ) ) |
12 |
11
|
oveq2d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) ) |
13 |
|
oveq2 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) |
14 |
13
|
oveq1d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( C -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h C ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) ) ) |
16 |
|
oveq2 |
|- ( D = if ( D e. ~H , D , 0h ) -> ( if ( C e. ~H , C , 0h ) -h D ) = ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) |
17 |
16
|
oveq2d |
|- ( D = if ( D e. ~H , D , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) ) |
18 |
|
oveq2 |
|- ( D = if ( D e. ~H , D , 0h ) -> ( if ( B e. ~H , B , 0h ) -h D ) = ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) |
19 |
18
|
oveq2d |
|- ( D = if ( D e. ~H , D , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) ) |
20 |
17 19
|
eqeq12d |
|- ( D = if ( D e. ~H , D , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h D ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h D ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) ) ) |
21 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
22 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
23 |
|
ifhvhv0 |
|- if ( C e. ~H , C , 0h ) e. ~H |
24 |
|
ifhvhv0 |
|- if ( D e. ~H , D , 0h ) e. ~H |
25 |
21 22 23 24
|
hvsubsub4i |
|- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) -h ( if ( C e. ~H , C , 0h ) -h if ( D e. ~H , D , 0h ) ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) -h ( if ( B e. ~H , B , 0h ) -h if ( D e. ~H , D , 0h ) ) ) |
26 |
5 10 15 20 25
|
dedth4h |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) ) |