| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvass.1 |  |-  A e. ~H | 
						
							| 2 |  | hvass.2 |  |-  B e. ~H | 
						
							| 3 |  | hvass.3 |  |-  C e. ~H | 
						
							| 4 |  | hvadd4.4 |  |-  D e. ~H | 
						
							| 5 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 6 | 5 2 | hvmulcli |  |-  ( -u 1 .h B ) e. ~H | 
						
							| 7 | 5 3 | hvmulcli |  |-  ( -u 1 .h C ) e. ~H | 
						
							| 8 | 5 4 | hvmulcli |  |-  ( -u 1 .h D ) e. ~H | 
						
							| 9 | 5 8 | hvmulcli |  |-  ( -u 1 .h ( -u 1 .h D ) ) e. ~H | 
						
							| 10 | 1 6 7 9 | hvadd4i |  |-  ( ( A +h ( -u 1 .h B ) ) +h ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) | 
						
							| 11 | 5 3 8 | hvdistr1i |  |-  ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) = ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) | 
						
							| 12 | 11 | oveq2i |  |-  ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h B ) ) +h ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) | 
						
							| 13 | 5 2 8 | hvdistr1i |  |-  ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) = ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) | 
						
							| 14 | 13 | oveq2i |  |-  ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) | 
						
							| 15 | 10 12 14 | 3eqtr4i |  |-  ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) | 
						
							| 16 | 1 6 | hvaddcli |  |-  ( A +h ( -u 1 .h B ) ) e. ~H | 
						
							| 17 | 3 8 | hvaddcli |  |-  ( C +h ( -u 1 .h D ) ) e. ~H | 
						
							| 18 | 16 17 | hvsubvali |  |-  ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) | 
						
							| 19 | 1 7 | hvaddcli |  |-  ( A +h ( -u 1 .h C ) ) e. ~H | 
						
							| 20 | 2 8 | hvaddcli |  |-  ( B +h ( -u 1 .h D ) ) e. ~H | 
						
							| 21 | 19 20 | hvsubvali |  |-  ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) | 
						
							| 22 | 15 18 21 | 3eqtr4i |  |-  ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) | 
						
							| 23 | 1 2 | hvsubvali |  |-  ( A -h B ) = ( A +h ( -u 1 .h B ) ) | 
						
							| 24 | 3 4 | hvsubvali |  |-  ( C -h D ) = ( C +h ( -u 1 .h D ) ) | 
						
							| 25 | 23 24 | oveq12i |  |-  ( ( A -h B ) -h ( C -h D ) ) = ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) | 
						
							| 26 | 1 3 | hvsubvali |  |-  ( A -h C ) = ( A +h ( -u 1 .h C ) ) | 
						
							| 27 | 2 4 | hvsubvali |  |-  ( B -h D ) = ( B +h ( -u 1 .h D ) ) | 
						
							| 28 | 26 27 | oveq12i |  |-  ( ( A -h C ) -h ( B -h D ) ) = ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) | 
						
							| 29 | 22 25 28 | 3eqtr4i |  |-  ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) |