Metamath Proof Explorer


Theorem hvsubval

Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion hvsubval
|- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) )

Proof

Step Hyp Ref Expression
1 oveq1
 |-  ( x = A -> ( x +h ( -u 1 .h y ) ) = ( A +h ( -u 1 .h y ) ) )
2 oveq2
 |-  ( y = B -> ( -u 1 .h y ) = ( -u 1 .h B ) )
3 2 oveq2d
 |-  ( y = B -> ( A +h ( -u 1 .h y ) ) = ( A +h ( -u 1 .h B ) ) )
4 df-hvsub
 |-  -h = ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) )
5 ovex
 |-  ( A +h ( -u 1 .h B ) ) e. _V
6 1 3 4 5 ovmpo
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) )