Metamath Proof Explorer


Theorem hvsubvali

Description: Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvaddcl.1
|- A e. ~H
hvaddcl.2
|- B e. ~H
Assertion hvsubvali
|- ( A -h B ) = ( A +h ( -u 1 .h B ) )

Proof

Step Hyp Ref Expression
1 hvaddcl.1
 |-  A e. ~H
2 hvaddcl.2
 |-  B e. ~H
3 hvsubval
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) )
4 1 2 3 mp2an
 |-  ( A -h B ) = ( A +h ( -u 1 .h B ) )