Step |
Hyp |
Ref |
Expression |
1 |
|
hypcgr.p |
|- P = ( Base ` G ) |
2 |
|
hypcgr.m |
|- .- = ( dist ` G ) |
3 |
|
hypcgr.i |
|- I = ( Itv ` G ) |
4 |
|
hypcgr.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
hypcgr.h |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
hypcgr.a |
|- ( ph -> A e. P ) |
7 |
|
hypcgr.b |
|- ( ph -> B e. P ) |
8 |
|
hypcgr.c |
|- ( ph -> C e. P ) |
9 |
|
hypcgr.d |
|- ( ph -> D e. P ) |
10 |
|
hypcgr.e |
|- ( ph -> E e. P ) |
11 |
|
hypcgr.f |
|- ( ph -> F e. P ) |
12 |
|
hypcgr.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
13 |
|
hypcgr.2 |
|- ( ph -> <" D E F "> e. ( raG ` G ) ) |
14 |
|
hypcgr.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
15 |
|
hypcgr.4 |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
16 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
17 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
18 |
1 2 3 4 5 7 10
|
midcl |
|- ( ph -> ( B ( midG ` G ) E ) e. P ) |
19 |
|
eqid |
|- ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) |
20 |
1 2 3 16 17 4 18 19 9
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) e. P ) |
21 |
1 2 3 16 17 4 18 19 10
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) e. P ) |
22 |
1 2 3 16 17 4 18 19 11
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) e. P ) |
23 |
1 2 3 16 17 4 9 10 11 13 19 18
|
mirrag |
|- ( ph -> <" ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) "> e. ( raG ` G ) ) |
24 |
1 2 3 16 17 4 18 19 9 10
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) = ( D .- E ) ) |
25 |
14 24
|
eqtr4d |
|- ( ph -> ( A .- B ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) ) |
26 |
1 2 3 16 17 4 18 19 10 11
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) = ( E .- F ) ) |
27 |
15 26
|
eqtr4d |
|- ( ph -> ( B .- C ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ) |
28 |
1 2 3 4 5 10 7
|
midcom |
|- ( ph -> ( E ( midG ` G ) B ) = ( B ( midG ` G ) E ) ) |
29 |
1 2 3 4 5 10 7 17 18
|
ismidb |
|- ( ph -> ( B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) <-> ( E ( midG ` G ) B ) = ( B ( midG ` G ) E ) ) ) |
30 |
28 29
|
mpbird |
|- ( ph -> B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` E ) ) |
31 |
|
eqid |
|- ( ( lInvG ` G ) ` ( ( C ( midG ` G ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ( LineG ` G ) B ) ) = ( ( lInvG ` G ) ` ( ( C ( midG ` G ) ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ( LineG ` G ) B ) ) |
32 |
1 2 3 4 5 6 7 8 20 21 22 12 23 25 27 30 31
|
hypcgrlem2 |
|- ( ph -> ( A .- C ) = ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) ) |
33 |
1 2 3 16 17 4 18 19 9 11
|
miriso |
|- ( ph -> ( ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` D ) .- ( ( ( pInvG ` G ) ` ( B ( midG ` G ) E ) ) ` F ) ) = ( D .- F ) ) |
34 |
32 33
|
eqtrd |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |