| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hypcgr.p |
|- P = ( Base ` G ) |
| 2 |
|
hypcgr.m |
|- .- = ( dist ` G ) |
| 3 |
|
hypcgr.i |
|- I = ( Itv ` G ) |
| 4 |
|
hypcgr.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
hypcgr.h |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
hypcgr.a |
|- ( ph -> A e. P ) |
| 7 |
|
hypcgr.b |
|- ( ph -> B e. P ) |
| 8 |
|
hypcgr.c |
|- ( ph -> C e. P ) |
| 9 |
|
hypcgr.d |
|- ( ph -> D e. P ) |
| 10 |
|
hypcgr.e |
|- ( ph -> E e. P ) |
| 11 |
|
hypcgr.f |
|- ( ph -> F e. P ) |
| 12 |
|
hypcgr.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 13 |
|
hypcgr.2 |
|- ( ph -> <" D E F "> e. ( raG ` G ) ) |
| 14 |
|
hypcgr.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 15 |
|
hypcgr.4 |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
| 16 |
|
hypcgrlem2.b |
|- ( ph -> B = E ) |
| 17 |
|
hypcgrlem1.s |
|- S = ( ( lInvG ` G ) ` ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) |
| 18 |
|
hypcgrlem1.a |
|- ( ph -> C = F ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> G e. TarskiG ) |
| 20 |
8
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> C e. P ) |
| 21 |
6
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> A e. P ) |
| 22 |
11
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> F e. P ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> D e. P ) |
| 24 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 25 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 26 |
1 2 3 24 25 4 6 7 8 12
|
ragcom |
|- ( ph -> <" C B A "> e. ( raG ` G ) ) |
| 27 |
1 2 3 24 25 4 8 7 6
|
israg |
|- ( ph -> ( <" C B A "> e. ( raG ` G ) <-> ( C .- A ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) ) |
| 28 |
26 27
|
mpbid |
|- ( ph -> ( C .- A ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( C .- A ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) |
| 30 |
18
|
eqcomd |
|- ( ph -> F = C ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> F = C ) |
| 32 |
1 2 3 4 5 6 9 25 7
|
ismidb |
|- ( ph -> ( D = ( ( ( pInvG ` G ) ` B ) ` A ) <-> ( A ( midG ` G ) D ) = B ) ) |
| 33 |
32
|
biimpar |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> D = ( ( ( pInvG ` G ) ` B ) ` A ) ) |
| 34 |
31 33
|
oveq12d |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( F .- D ) = ( C .- ( ( ( pInvG ` G ) ` B ) ` A ) ) ) |
| 35 |
29 34
|
eqtr4d |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( C .- A ) = ( F .- D ) ) |
| 36 |
1 2 3 19 20 21 22 23 35
|
tgcgrcomlr |
|- ( ( ph /\ ( A ( midG ` G ) D ) = B ) -> ( A .- C ) = ( D .- F ) ) |
| 37 |
|
simpr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = D ) -> A = D ) |
| 38 |
18
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = D ) -> C = F ) |
| 39 |
37 38
|
oveq12d |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = D ) -> ( A .- C ) = ( D .- F ) ) |
| 40 |
12
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" A B C "> e. ( raG ` G ) ) |
| 41 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> G e. TarskiG ) |
| 42 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A e. P ) |
| 43 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> B e. P ) |
| 44 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> C e. P ) |
| 45 |
1 2 3 24 25 41 42 43 44
|
israg |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) ) |
| 46 |
40 45
|
mpbid |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- C ) = ( A .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) |
| 47 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> G TarskiGDim>= 2 ) |
| 48 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> D e. P ) |
| 49 |
1 2 3 41 47 42 48
|
midcl |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. P ) |
| 50 |
|
simplr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) =/= B ) |
| 51 |
1 3 24 41 49 43 50
|
tgelrnln |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) e. ran ( LineG ` G ) ) |
| 52 |
|
eqid |
|- ( ( pInvG ` G ) ` B ) = ( ( pInvG ` G ) ` B ) |
| 53 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 54 |
1 2 3 24 25 41 43 52 44
|
mircl |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( ( pInvG ` G ) ` B ) ` C ) e. P ) |
| 55 |
|
simpr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A =/= D ) |
| 56 |
1 2 3 41 47 42 48
|
midbtwn |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( A I D ) ) |
| 57 |
1 24 3 41 42 49 48 56
|
btwncolg3 |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D e. ( A ( LineG ` G ) ( A ( midG ` G ) D ) ) \/ A = ( A ( midG ` G ) D ) ) ) |
| 58 |
|
eqidd |
|- ( ph -> D = D ) |
| 59 |
58 16 18
|
s3eqd |
|- ( ph -> <" D B C "> = <" D E F "> ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" D B C "> = <" D E F "> ) |
| 61 |
13
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" D E F "> e. ( raG ` G ) ) |
| 62 |
60 61
|
eqeltrd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" D B C "> e. ( raG ` G ) ) |
| 63 |
1 2 3 24 25 41 48 43 44
|
israg |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" D B C "> e. ( raG ` G ) <-> ( D .- C ) = ( D .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) ) |
| 64 |
62 63
|
mpbid |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D .- C ) = ( D .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) |
| 65 |
1 24 3 41 42 48 49 53 44 54 2 55 57 46 64
|
lncgr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( A ( midG ` G ) D ) .- C ) = ( ( A ( midG ` G ) D ) .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) |
| 66 |
1 2 3 24 25 41 49 43 44
|
israg |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" ( A ( midG ` G ) D ) B C "> e. ( raG ` G ) <-> ( ( A ( midG ` G ) D ) .- C ) = ( ( A ( midG ` G ) D ) .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) ) |
| 67 |
65 66
|
mpbird |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" ( A ( midG ` G ) D ) B C "> e. ( raG ` G ) ) |
| 68 |
1 3 24 41 49 43 50
|
tglinerflx1 |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) |
| 69 |
1 3 24 41 49 43 50
|
tglinerflx2 |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> B e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) |
| 70 |
1 2 3 41 47 17 24 51 49 52 67 68 69 44 50
|
lmimid |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( S ` C ) = ( ( ( pInvG ` G ) ` B ) ` C ) ) |
| 71 |
70
|
oveq2d |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- ( S ` C ) ) = ( A .- ( ( ( pInvG ` G ) ` B ) ` C ) ) ) |
| 72 |
46 71
|
eqtr4d |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- C ) = ( A .- ( S ` C ) ) ) |
| 73 |
1 2 3 41 47 48 42
|
midcom |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D ( midG ` G ) A ) = ( A ( midG ` G ) D ) ) |
| 74 |
73 68
|
eqeltrd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D ( midG ` G ) A ) e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ) |
| 75 |
55
|
necomd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> D =/= A ) |
| 76 |
1 3 24 41 48 42 75
|
tgelrnln |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D ( LineG ` G ) A ) e. ran ( LineG ` G ) ) |
| 77 |
1 2 3 41 42 49 48 56
|
tgbtwncom |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( D I A ) ) |
| 78 |
1 3 24 41 48 42 49 75 77
|
btwnlng1 |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( D ( LineG ` G ) A ) ) |
| 79 |
68 78
|
elind |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) e. ( ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) i^i ( D ( LineG ` G ) A ) ) ) |
| 80 |
1 3 24 41 48 42 75
|
tglinerflx2 |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A e. ( D ( LineG ` G ) A ) ) |
| 81 |
50
|
necomd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> B =/= ( A ( midG ` G ) D ) ) |
| 82 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> G e. TarskiG ) |
| 83 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> A e. P ) |
| 84 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> D e. P ) |
| 85 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> G TarskiGDim>= 2 ) |
| 86 |
|
simpr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> A = ( A ( midG ` G ) D ) ) |
| 87 |
86
|
eqcomd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> ( A ( midG ` G ) D ) = A ) |
| 88 |
1 2 3 82 85 83 84 87
|
midcgr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> ( A .- A ) = ( A .- D ) ) |
| 89 |
88
|
eqcomd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> ( A .- D ) = ( A .- A ) ) |
| 90 |
1 2 3 82 83 84 83 89
|
axtgcgrid |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A = ( A ( midG ` G ) D ) ) -> A = D ) |
| 91 |
90
|
ex |
|- ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) -> ( A = ( A ( midG ` G ) D ) -> A = D ) ) |
| 92 |
91
|
necon3d |
|- ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) -> ( A =/= D -> A =/= ( A ( midG ` G ) D ) ) ) |
| 93 |
92
|
imp |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A =/= ( A ( midG ` G ) D ) ) |
| 94 |
1 2 3 4 6 7 9 10 14
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( E .- D ) ) |
| 95 |
16
|
oveq1d |
|- ( ph -> ( B .- D ) = ( E .- D ) ) |
| 96 |
94 95
|
eqtr4d |
|- ( ph -> ( B .- A ) = ( B .- D ) ) |
| 97 |
96
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( B .- A ) = ( B .- D ) ) |
| 98 |
|
eqidd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A ( midG ` G ) D ) = ( A ( midG ` G ) D ) ) |
| 99 |
1 2 3 41 47 42 48 25 49
|
ismidb |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) <-> ( A ( midG ` G ) D ) = ( A ( midG ` G ) D ) ) ) |
| 100 |
98 99
|
mpbird |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> D = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) |
| 101 |
100
|
oveq2d |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( B .- D ) = ( B .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) ) |
| 102 |
97 101
|
eqtrd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( B .- A ) = ( B .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) ) |
| 103 |
1 2 3 24 25 41 43 49 42
|
israg |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( <" B ( A ( midG ` G ) D ) A "> e. ( raG ` G ) <-> ( B .- A ) = ( B .- ( ( ( pInvG ` G ) ` ( A ( midG ` G ) D ) ) ` A ) ) ) ) |
| 104 |
102 103
|
mpbird |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> <" B ( A ( midG ` G ) D ) A "> e. ( raG ` G ) ) |
| 105 |
1 2 3 24 41 51 76 79 69 80 81 93 104
|
ragperp |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ( perpG ` G ) ( D ( LineG ` G ) A ) ) |
| 106 |
105
|
orcd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ( perpG ` G ) ( D ( LineG ` G ) A ) \/ D = A ) ) |
| 107 |
1 2 3 41 47 17 24 51 48 42
|
islmib |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A = ( S ` D ) <-> ( ( D ( midG ` G ) A ) e. ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) /\ ( ( ( A ( midG ` G ) D ) ( LineG ` G ) B ) ( perpG ` G ) ( D ( LineG ` G ) A ) \/ D = A ) ) ) ) |
| 108 |
74 106 107
|
mpbir2and |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> A = ( S ` D ) ) |
| 109 |
108
|
oveq1d |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- ( S ` C ) ) = ( ( S ` D ) .- ( S ` C ) ) ) |
| 110 |
1 2 3 41 47 17 24 51 48 44
|
lmiiso |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( ( S ` D ) .- ( S ` C ) ) = ( D .- C ) ) |
| 111 |
18
|
oveq2d |
|- ( ph -> ( D .- C ) = ( D .- F ) ) |
| 112 |
111
|
ad2antrr |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( D .- C ) = ( D .- F ) ) |
| 113 |
109 110 112
|
3eqtrd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- ( S ` C ) ) = ( D .- F ) ) |
| 114 |
72 113
|
eqtrd |
|- ( ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) /\ A =/= D ) -> ( A .- C ) = ( D .- F ) ) |
| 115 |
39 114
|
pm2.61dane |
|- ( ( ph /\ ( A ( midG ` G ) D ) =/= B ) -> ( A .- C ) = ( D .- F ) ) |
| 116 |
36 115
|
pm2.61dane |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |