Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
1
|
fconst6 |
|- ( RR X. { 0 } ) : RR --> RR |
3 |
2
|
a1i |
|- ( T. -> ( RR X. { 0 } ) : RR --> RR ) |
4 |
|
snfi |
|- { 0 } e. Fin |
5 |
|
rnxpss |
|- ran ( RR X. { 0 } ) C_ { 0 } |
6 |
|
ssfi |
|- ( ( { 0 } e. Fin /\ ran ( RR X. { 0 } ) C_ { 0 } ) -> ran ( RR X. { 0 } ) e. Fin ) |
7 |
4 5 6
|
mp2an |
|- ran ( RR X. { 0 } ) e. Fin |
8 |
7
|
a1i |
|- ( T. -> ran ( RR X. { 0 } ) e. Fin ) |
9 |
|
difss |
|- ( ran ( RR X. { 0 } ) \ { 0 } ) C_ ran ( RR X. { 0 } ) |
10 |
9 5
|
sstri |
|- ( ran ( RR X. { 0 } ) \ { 0 } ) C_ { 0 } |
11 |
10
|
sseli |
|- ( x e. ( ran ( RR X. { 0 } ) \ { 0 } ) -> x e. { 0 } ) |
12 |
11
|
adantl |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> x e. { 0 } ) |
13 |
|
eldifn |
|- ( x e. ( ran ( RR X. { 0 } ) \ { 0 } ) -> -. x e. { 0 } ) |
14 |
13
|
adantl |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> -. x e. { 0 } ) |
15 |
12 14
|
pm2.21dd |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> ( `' ( RR X. { 0 } ) " { x } ) e. dom vol ) |
16 |
12 14
|
pm2.21dd |
|- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) e. RR ) |
17 |
3 8 15 16
|
i1fd |
|- ( T. -> ( RR X. { 0 } ) e. dom S.1 ) |
18 |
17
|
mptru |
|- ( RR X. { 0 } ) e. dom S.1 |