Step |
Hyp |
Ref |
Expression |
1 |
|
i1f1.1 |
|- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
2 |
1
|
i1f1lem |
|- ( F : RR --> { 0 , 1 } /\ ( A e. dom vol -> ( `' F " { 1 } ) = A ) ) |
3 |
2
|
simpli |
|- F : RR --> { 0 , 1 } |
4 |
|
0re |
|- 0 e. RR |
5 |
|
1re |
|- 1 e. RR |
6 |
|
prssi |
|- ( ( 0 e. RR /\ 1 e. RR ) -> { 0 , 1 } C_ RR ) |
7 |
4 5 6
|
mp2an |
|- { 0 , 1 } C_ RR |
8 |
|
fss |
|- ( ( F : RR --> { 0 , 1 } /\ { 0 , 1 } C_ RR ) -> F : RR --> RR ) |
9 |
3 7 8
|
mp2an |
|- F : RR --> RR |
10 |
9
|
a1i |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F : RR --> RR ) |
11 |
|
prfi |
|- { 0 , 1 } e. Fin |
12 |
|
1ex |
|- 1 e. _V |
13 |
12
|
prid2 |
|- 1 e. { 0 , 1 } |
14 |
|
c0ex |
|- 0 e. _V |
15 |
14
|
prid1 |
|- 0 e. { 0 , 1 } |
16 |
13 15
|
ifcli |
|- if ( x e. A , 1 , 0 ) e. { 0 , 1 } |
17 |
16
|
a1i |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ x e. RR ) -> if ( x e. A , 1 , 0 ) e. { 0 , 1 } ) |
18 |
17 1
|
fmptd |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F : RR --> { 0 , 1 } ) |
19 |
|
frn |
|- ( F : RR --> { 0 , 1 } -> ran F C_ { 0 , 1 } ) |
20 |
18 19
|
syl |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ran F C_ { 0 , 1 } ) |
21 |
|
ssfi |
|- ( ( { 0 , 1 } e. Fin /\ ran F C_ { 0 , 1 } ) -> ran F e. Fin ) |
22 |
11 20 21
|
sylancr |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ran F e. Fin ) |
23 |
3 19
|
ax-mp |
|- ran F C_ { 0 , 1 } |
24 |
|
df-pr |
|- { 0 , 1 } = ( { 0 } u. { 1 } ) |
25 |
24
|
equncomi |
|- { 0 , 1 } = ( { 1 } u. { 0 } ) |
26 |
23 25
|
sseqtri |
|- ran F C_ ( { 1 } u. { 0 } ) |
27 |
|
ssdif |
|- ( ran F C_ ( { 1 } u. { 0 } ) -> ( ran F \ { 0 } ) C_ ( ( { 1 } u. { 0 } ) \ { 0 } ) ) |
28 |
26 27
|
ax-mp |
|- ( ran F \ { 0 } ) C_ ( ( { 1 } u. { 0 } ) \ { 0 } ) |
29 |
|
difun2 |
|- ( ( { 1 } u. { 0 } ) \ { 0 } ) = ( { 1 } \ { 0 } ) |
30 |
|
difss |
|- ( { 1 } \ { 0 } ) C_ { 1 } |
31 |
29 30
|
eqsstri |
|- ( ( { 1 } u. { 0 } ) \ { 0 } ) C_ { 1 } |
32 |
28 31
|
sstri |
|- ( ran F \ { 0 } ) C_ { 1 } |
33 |
32
|
sseli |
|- ( y e. ( ran F \ { 0 } ) -> y e. { 1 } ) |
34 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
35 |
33 34
|
syl |
|- ( y e. ( ran F \ { 0 } ) -> y = 1 ) |
36 |
35
|
sneqd |
|- ( y e. ( ran F \ { 0 } ) -> { y } = { 1 } ) |
37 |
36
|
imaeq2d |
|- ( y e. ( ran F \ { 0 } ) -> ( `' F " { y } ) = ( `' F " { 1 } ) ) |
38 |
2
|
simpri |
|- ( A e. dom vol -> ( `' F " { 1 } ) = A ) |
39 |
38
|
adantr |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( `' F " { 1 } ) = A ) |
40 |
37 39
|
sylan9eqr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) = A ) |
41 |
|
simpll |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> A e. dom vol ) |
42 |
40 41
|
eqeltrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) |
43 |
40
|
fveq2d |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol ` A ) ) |
44 |
|
simplr |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` A ) e. RR ) |
45 |
43 44
|
eqeltrd |
|- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
46 |
10 22 42 45
|
i1fd |
|- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F e. dom S.1 ) |