| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
| 3 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 4 |
1 3
|
syl |
|- ( ph -> F : RR --> RR ) |
| 5 |
4
|
ffnd |
|- ( ph -> F Fn RR ) |
| 6 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
| 7 |
2 6
|
syl |
|- ( ph -> G : RR --> RR ) |
| 8 |
7
|
ffnd |
|- ( ph -> G Fn RR ) |
| 9 |
|
reex |
|- RR e. _V |
| 10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
| 11 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 12 |
5 8 10 10 11
|
offn |
|- ( ph -> ( F oF + G ) Fn RR ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ A e. CC ) -> ( F oF + G ) Fn RR ) |
| 14 |
|
fniniseg |
|- ( ( F oF + G ) Fn RR -> ( z e. ( `' ( F oF + G ) " { A } ) <-> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 16 |
8
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> G Fn RR ) |
| 17 |
|
simprl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. RR ) |
| 18 |
|
fnfvelrn |
|- ( ( G Fn RR /\ z e. RR ) -> ( G ` z ) e. ran G ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) e. ran G ) |
| 20 |
|
simprr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( F oF + G ) ` z ) = A ) |
| 21 |
|
eqidd |
|- ( ( ph /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
| 22 |
|
eqidd |
|- ( ( ph /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) |
| 23 |
5 8 10 10 11 21 22
|
ofval |
|- ( ( ph /\ z e. RR ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
| 24 |
23
|
ad2ant2r |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
| 25 |
20 24
|
eqtr3d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> A = ( ( F ` z ) + ( G ` z ) ) ) |
| 26 |
25
|
oveq1d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( A - ( G ` z ) ) = ( ( ( F ` z ) + ( G ` z ) ) - ( G ` z ) ) ) |
| 27 |
|
ax-resscn |
|- RR C_ CC |
| 28 |
|
fss |
|- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
| 29 |
4 27 28
|
sylancl |
|- ( ph -> F : RR --> CC ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> F : RR --> CC ) |
| 31 |
30 17
|
ffvelcdmd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( F ` z ) e. CC ) |
| 32 |
|
fss |
|- ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) |
| 33 |
7 27 32
|
sylancl |
|- ( ph -> G : RR --> CC ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> G : RR --> CC ) |
| 35 |
34 17
|
ffvelcdmd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) e. CC ) |
| 36 |
31 35
|
pncand |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( ( F ` z ) + ( G ` z ) ) - ( G ` z ) ) = ( F ` z ) ) |
| 37 |
26 36
|
eqtr2d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( F ` z ) = ( A - ( G ` z ) ) ) |
| 38 |
5
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> F Fn RR ) |
| 39 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( A - ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - ( G ` z ) ) ) ) ) |
| 40 |
38 39
|
syl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( z e. ( `' F " { ( A - ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - ( G ` z ) ) ) ) ) |
| 41 |
17 37 40
|
mpbir2and |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( `' F " { ( A - ( G ` z ) ) } ) ) |
| 42 |
|
eqidd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) = ( G ` z ) ) |
| 43 |
|
fniniseg |
|- ( G Fn RR -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
| 44 |
16 43
|
syl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
| 45 |
17 42 44
|
mpbir2and |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( `' G " { ( G ` z ) } ) ) |
| 46 |
41 45
|
elind |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
| 47 |
|
oveq2 |
|- ( y = ( G ` z ) -> ( A - y ) = ( A - ( G ` z ) ) ) |
| 48 |
47
|
sneqd |
|- ( y = ( G ` z ) -> { ( A - y ) } = { ( A - ( G ` z ) ) } ) |
| 49 |
48
|
imaeq2d |
|- ( y = ( G ` z ) -> ( `' F " { ( A - y ) } ) = ( `' F " { ( A - ( G ` z ) ) } ) ) |
| 50 |
|
sneq |
|- ( y = ( G ` z ) -> { y } = { ( G ` z ) } ) |
| 51 |
50
|
imaeq2d |
|- ( y = ( G ` z ) -> ( `' G " { y } ) = ( `' G " { ( G ` z ) } ) ) |
| 52 |
49 51
|
ineq12d |
|- ( y = ( G ` z ) -> ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) = ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
| 53 |
52
|
eleq2d |
|- ( y = ( G ` z ) -> ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) ) |
| 54 |
53
|
rspcev |
|- ( ( ( G ` z ) e. ran G /\ z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
| 55 |
19 46 54
|
syl2anc |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
| 56 |
55
|
ex |
|- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 57 |
|
elin |
|- ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) ) |
| 58 |
5
|
adantr |
|- ( ( ph /\ A e. CC ) -> F Fn RR ) |
| 59 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( A - y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - y ) ) ) ) |
| 60 |
58 59
|
syl |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' F " { ( A - y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - y ) ) ) ) |
| 61 |
8
|
adantr |
|- ( ( ph /\ A e. CC ) -> G Fn RR ) |
| 62 |
|
fniniseg |
|- ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
| 63 |
61 62
|
syl |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
| 64 |
60 63
|
anbi12d |
|- ( ( ph /\ A e. CC ) -> ( ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) ) |
| 65 |
|
anandi |
|- ( ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) |
| 66 |
|
simprl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> z e. RR ) |
| 67 |
23
|
ad2ant2r |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
| 68 |
|
simprrl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( F ` z ) = ( A - y ) ) |
| 69 |
|
simprrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( G ` z ) = y ) |
| 70 |
68 69
|
oveq12d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F ` z ) + ( G ` z ) ) = ( ( A - y ) + y ) ) |
| 71 |
|
simplr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> A e. CC ) |
| 72 |
33
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> G : RR --> CC ) |
| 73 |
72 66
|
ffvelcdmd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( G ` z ) e. CC ) |
| 74 |
69 73
|
eqeltrrd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> y e. CC ) |
| 75 |
71 74
|
npcand |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( A - y ) + y ) = A ) |
| 76 |
67 70 75
|
3eqtrd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F oF + G ) ` z ) = A ) |
| 77 |
66 76
|
jca |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) |
| 78 |
77
|
ex |
|- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 79 |
65 78
|
biimtrrid |
|- ( ( ph /\ A e. CC ) -> ( ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 80 |
64 79
|
sylbid |
|- ( ( ph /\ A e. CC ) -> ( ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 81 |
57 80
|
biimtrid |
|- ( ( ph /\ A e. CC ) -> ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 82 |
81
|
rexlimdvw |
|- ( ( ph /\ A e. CC ) -> ( E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
| 83 |
56 82
|
impbid |
|- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 84 |
15 83
|
bitrd |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 85 |
|
eliun |
|- ( z e. U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
| 86 |
84 85
|
bitr4di |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> z e. U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 87 |
86
|
eqrdv |
|- ( ( ph /\ A e. CC ) -> ( `' ( F oF + G ) " { A } ) = U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |