Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
3 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
4 |
1 3
|
syl |
|- ( ph -> F : RR --> RR ) |
5 |
4
|
ffnd |
|- ( ph -> F Fn RR ) |
6 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
7 |
2 6
|
syl |
|- ( ph -> G : RR --> RR ) |
8 |
7
|
ffnd |
|- ( ph -> G Fn RR ) |
9 |
|
reex |
|- RR e. _V |
10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
11 |
|
inidm |
|- ( RR i^i RR ) = RR |
12 |
5 8 10 10 11
|
offn |
|- ( ph -> ( F oF + G ) Fn RR ) |
13 |
12
|
adantr |
|- ( ( ph /\ A e. CC ) -> ( F oF + G ) Fn RR ) |
14 |
|
fniniseg |
|- ( ( F oF + G ) Fn RR -> ( z e. ( `' ( F oF + G ) " { A } ) <-> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
15 |
13 14
|
syl |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
16 |
8
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> G Fn RR ) |
17 |
|
simprl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. RR ) |
18 |
|
fnfvelrn |
|- ( ( G Fn RR /\ z e. RR ) -> ( G ` z ) e. ran G ) |
19 |
16 17 18
|
syl2anc |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) e. ran G ) |
20 |
|
simprr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( F oF + G ) ` z ) = A ) |
21 |
|
eqidd |
|- ( ( ph /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
22 |
|
eqidd |
|- ( ( ph /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) |
23 |
5 8 10 10 11 21 22
|
ofval |
|- ( ( ph /\ z e. RR ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
24 |
23
|
ad2ant2r |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
25 |
20 24
|
eqtr3d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> A = ( ( F ` z ) + ( G ` z ) ) ) |
26 |
25
|
oveq1d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( A - ( G ` z ) ) = ( ( ( F ` z ) + ( G ` z ) ) - ( G ` z ) ) ) |
27 |
|
ax-resscn |
|- RR C_ CC |
28 |
|
fss |
|- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
29 |
4 27 28
|
sylancl |
|- ( ph -> F : RR --> CC ) |
30 |
29
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> F : RR --> CC ) |
31 |
30 17
|
ffvelrnd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( F ` z ) e. CC ) |
32 |
|
fss |
|- ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) |
33 |
7 27 32
|
sylancl |
|- ( ph -> G : RR --> CC ) |
34 |
33
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> G : RR --> CC ) |
35 |
34 17
|
ffvelrnd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) e. CC ) |
36 |
31 35
|
pncand |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( ( ( F ` z ) + ( G ` z ) ) - ( G ` z ) ) = ( F ` z ) ) |
37 |
26 36
|
eqtr2d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( F ` z ) = ( A - ( G ` z ) ) ) |
38 |
5
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> F Fn RR ) |
39 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( A - ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - ( G ` z ) ) ) ) ) |
40 |
38 39
|
syl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( z e. ( `' F " { ( A - ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - ( G ` z ) ) ) ) ) |
41 |
17 37 40
|
mpbir2and |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( `' F " { ( A - ( G ` z ) ) } ) ) |
42 |
|
eqidd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( G ` z ) = ( G ` z ) ) |
43 |
|
fniniseg |
|- ( G Fn RR -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
44 |
16 43
|
syl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
45 |
17 42 44
|
mpbir2and |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( `' G " { ( G ` z ) } ) ) |
46 |
41 45
|
elind |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
47 |
|
oveq2 |
|- ( y = ( G ` z ) -> ( A - y ) = ( A - ( G ` z ) ) ) |
48 |
47
|
sneqd |
|- ( y = ( G ` z ) -> { ( A - y ) } = { ( A - ( G ` z ) ) } ) |
49 |
48
|
imaeq2d |
|- ( y = ( G ` z ) -> ( `' F " { ( A - y ) } ) = ( `' F " { ( A - ( G ` z ) ) } ) ) |
50 |
|
sneq |
|- ( y = ( G ` z ) -> { y } = { ( G ` z ) } ) |
51 |
50
|
imaeq2d |
|- ( y = ( G ` z ) -> ( `' G " { y } ) = ( `' G " { ( G ` z ) } ) ) |
52 |
49 51
|
ineq12d |
|- ( y = ( G ` z ) -> ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) = ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
53 |
52
|
eleq2d |
|- ( y = ( G ` z ) -> ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) ) |
54 |
53
|
rspcev |
|- ( ( ( G ` z ) e. ran G /\ z e. ( ( `' F " { ( A - ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
55 |
19 46 54
|
syl2anc |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
56 |
55
|
ex |
|- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) -> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
57 |
|
elin |
|- ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) ) |
58 |
5
|
adantr |
|- ( ( ph /\ A e. CC ) -> F Fn RR ) |
59 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( A - y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - y ) ) ) ) |
60 |
58 59
|
syl |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' F " { ( A - y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A - y ) ) ) ) |
61 |
8
|
adantr |
|- ( ( ph /\ A e. CC ) -> G Fn RR ) |
62 |
|
fniniseg |
|- ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
63 |
61 62
|
syl |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
64 |
60 63
|
anbi12d |
|- ( ( ph /\ A e. CC ) -> ( ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) ) |
65 |
|
anandi |
|- ( ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) |
66 |
|
simprl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> z e. RR ) |
67 |
23
|
ad2ant2r |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F oF + G ) ` z ) = ( ( F ` z ) + ( G ` z ) ) ) |
68 |
|
simprrl |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( F ` z ) = ( A - y ) ) |
69 |
|
simprrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( G ` z ) = y ) |
70 |
68 69
|
oveq12d |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F ` z ) + ( G ` z ) ) = ( ( A - y ) + y ) ) |
71 |
|
simplr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> A e. CC ) |
72 |
33
|
ad2antrr |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> G : RR --> CC ) |
73 |
72 66
|
ffvelrnd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( G ` z ) e. CC ) |
74 |
69 73
|
eqeltrrd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> y e. CC ) |
75 |
71 74
|
npcand |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( A - y ) + y ) = A ) |
76 |
67 70 75
|
3eqtrd |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( ( F oF + G ) ` z ) = A ) |
77 |
66 76
|
jca |
|- ( ( ( ph /\ A e. CC ) /\ ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) |
78 |
77
|
ex |
|- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F ` z ) = ( A - y ) /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
79 |
65 78
|
syl5bir |
|- ( ( ph /\ A e. CC ) -> ( ( ( z e. RR /\ ( F ` z ) = ( A - y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
80 |
64 79
|
sylbid |
|- ( ( ph /\ A e. CC ) -> ( ( z e. ( `' F " { ( A - y ) } ) /\ z e. ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
81 |
57 80
|
syl5bi |
|- ( ( ph /\ A e. CC ) -> ( z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
82 |
81
|
rexlimdvw |
|- ( ( ph /\ A e. CC ) -> ( E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) ) ) |
83 |
56 82
|
impbid |
|- ( ( ph /\ A e. CC ) -> ( ( z e. RR /\ ( ( F oF + G ) ` z ) = A ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
84 |
15 83
|
bitrd |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
85 |
|
eliun |
|- ( z e. U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) <-> E. y e. ran G z e. ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |
86 |
84 85
|
bitr4di |
|- ( ( ph /\ A e. CC ) -> ( z e. ( `' ( F oF + G ) " { A } ) <-> z e. U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) ) |
87 |
86
|
eqrdv |
|- ( ( ph /\ A e. CC ) -> ( `' ( F oF + G ) " { A } ) = U_ y e. ran G ( ( `' F " { ( A - y ) } ) i^i ( `' G " { y } ) ) ) |