Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f | |- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
|
| 2 | 1 | simprbi | |- ( F e. dom S.1 -> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 3 | 2 | simp1d | |- ( F e. dom S.1 -> F : RR --> RR ) |