| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " A ) e. dom vol ) |
| 2 |
1
|
adantr |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " A ) e. dom vol ) |
| 3 |
|
mblvol |
|- ( ( `' F " A ) e. dom vol -> ( vol ` ( `' F " A ) ) = ( vol* ` ( `' F " A ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " A ) ) = ( vol* ` ( `' F " A ) ) ) |
| 5 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 6 |
5
|
adantr |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> F : RR --> RR ) |
| 7 |
|
ffun |
|- ( F : RR --> RR -> Fun F ) |
| 8 |
|
inpreima |
|- ( Fun F -> ( `' F " ( A i^i ran F ) ) = ( ( `' F " A ) i^i ( `' F " ran F ) ) ) |
| 9 |
6 7 8
|
3syl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( A i^i ran F ) ) = ( ( `' F " A ) i^i ( `' F " ran F ) ) ) |
| 10 |
|
cnvimass |
|- ( `' F " A ) C_ dom F |
| 11 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
| 12 |
10 11
|
sseqtrri |
|- ( `' F " A ) C_ ( `' F " ran F ) |
| 13 |
|
dfss2 |
|- ( ( `' F " A ) C_ ( `' F " ran F ) <-> ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( `' F " A ) ) |
| 14 |
12 13
|
mpbi |
|- ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( `' F " A ) |
| 15 |
9 14
|
eqtr2di |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " A ) = ( `' F " ( A i^i ran F ) ) ) |
| 16 |
|
elinel1 |
|- ( 0 e. ( A i^i ran F ) -> 0 e. A ) |
| 17 |
16
|
con3i |
|- ( -. 0 e. A -> -. 0 e. ( A i^i ran F ) ) |
| 18 |
17
|
adantl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> -. 0 e. ( A i^i ran F ) ) |
| 19 |
|
disjsn |
|- ( ( ( A i^i ran F ) i^i { 0 } ) = (/) <-> -. 0 e. ( A i^i ran F ) ) |
| 20 |
18 19
|
sylibr |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( ( A i^i ran F ) i^i { 0 } ) = (/) ) |
| 21 |
|
inss2 |
|- ( A i^i ran F ) C_ ran F |
| 22 |
5
|
frnd |
|- ( F e. dom S.1 -> ran F C_ RR ) |
| 23 |
21 22
|
sstrid |
|- ( F e. dom S.1 -> ( A i^i ran F ) C_ RR ) |
| 24 |
23
|
adantr |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( A i^i ran F ) C_ RR ) |
| 25 |
|
reldisj |
|- ( ( A i^i ran F ) C_ RR -> ( ( ( A i^i ran F ) i^i { 0 } ) = (/) <-> ( A i^i ran F ) C_ ( RR \ { 0 } ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( ( ( A i^i ran F ) i^i { 0 } ) = (/) <-> ( A i^i ran F ) C_ ( RR \ { 0 } ) ) ) |
| 27 |
20 26
|
mpbid |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( A i^i ran F ) C_ ( RR \ { 0 } ) ) |
| 28 |
|
imass2 |
|- ( ( A i^i ran F ) C_ ( RR \ { 0 } ) -> ( `' F " ( A i^i ran F ) ) C_ ( `' F " ( RR \ { 0 } ) ) ) |
| 29 |
27 28
|
syl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( A i^i ran F ) ) C_ ( `' F " ( RR \ { 0 } ) ) ) |
| 30 |
15 29
|
eqsstrd |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " A ) C_ ( `' F " ( RR \ { 0 } ) ) ) |
| 31 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " ( RR \ { 0 } ) ) e. dom vol ) |
| 32 |
31
|
adantr |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( RR \ { 0 } ) ) e. dom vol ) |
| 33 |
|
mblss |
|- ( ( `' F " ( RR \ { 0 } ) ) e. dom vol -> ( `' F " ( RR \ { 0 } ) ) C_ RR ) |
| 34 |
32 33
|
syl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( `' F " ( RR \ { 0 } ) ) C_ RR ) |
| 35 |
|
mblvol |
|- ( ( `' F " ( RR \ { 0 } ) ) e. dom vol -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) = ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) ) |
| 36 |
32 35
|
syl |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) = ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) ) |
| 37 |
|
isi1f |
|- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
| 38 |
37
|
simprbi |
|- ( F e. dom S.1 -> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 39 |
38
|
simp3d |
|- ( F e. dom S.1 -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 40 |
39
|
adantr |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 41 |
36 40
|
eqeltrrd |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 42 |
|
ovolsscl |
|- ( ( ( `' F " A ) C_ ( `' F " ( RR \ { 0 } ) ) /\ ( `' F " ( RR \ { 0 } ) ) C_ RR /\ ( vol* ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) -> ( vol* ` ( `' F " A ) ) e. RR ) |
| 43 |
30 34 41 42
|
syl3anc |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol* ` ( `' F " A ) ) e. RR ) |
| 44 |
4 43
|
eqeltrd |
|- ( ( F e. dom S.1 /\ -. 0 e. A ) -> ( vol ` ( `' F " A ) ) e. RR ) |