Metamath Proof Explorer


Theorem i1fima2sn

Description: Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima2sn
|- ( ( F e. dom S.1 /\ A e. ( B \ { 0 } ) ) -> ( vol ` ( `' F " { A } ) ) e. RR )

Proof

Step Hyp Ref Expression
1 eldifn
 |-  ( A e. ( B \ { 0 } ) -> -. A e. { 0 } )
2 elsni
 |-  ( 0 e. { A } -> 0 = A )
3 snidg
 |-  ( 0 e. { A } -> 0 e. { 0 } )
4 2 3 eqeltrrd
 |-  ( 0 e. { A } -> A e. { 0 } )
5 1 4 nsyl
 |-  ( A e. ( B \ { 0 } ) -> -. 0 e. { A } )
6 i1fima2
 |-  ( ( F e. dom S.1 /\ -. 0 e. { A } ) -> ( vol ` ( `' F " { A } ) ) e. RR )
7 5 6 sylan2
 |-  ( ( F e. dom S.1 /\ A e. ( B \ { 0 } ) ) -> ( vol ` ( `' F " { A } ) ) e. RR )