Description: Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | i1fima2sn | |- ( ( F e. dom S.1 /\ A e. ( B \ { 0 } ) ) -> ( vol ` ( `' F " { A } ) ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn | |- ( A e. ( B \ { 0 } ) -> -. A e. { 0 } ) |
|
2 | elsni | |- ( 0 e. { A } -> 0 = A ) |
|
3 | snidg | |- ( 0 e. { A } -> 0 e. { 0 } ) |
|
4 | 2 3 | eqeltrrd | |- ( 0 e. { A } -> A e. { 0 } ) |
5 | 1 4 | nsyl | |- ( A e. ( B \ { 0 } ) -> -. 0 e. { A } ) |
6 | i1fima2 | |- ( ( F e. dom S.1 /\ -. 0 e. { A } ) -> ( vol ` ( `' F " { A } ) ) e. RR ) |
|
7 | 5 6 | sylan2 | |- ( ( F e. dom S.1 /\ A e. ( B \ { 0 } ) ) -> ( vol ` ( `' F " { A } ) ) e. RR ) |