| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 |  |-  ( ph -> F e. dom S.1 ) | 
						
							| 2 |  | i1fadd.2 |  |-  ( ph -> G e. dom S.1 ) | 
						
							| 3 |  | remulcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) | 
						
							| 5 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> F : RR --> RR ) | 
						
							| 7 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> G : RR --> RR ) | 
						
							| 9 |  | reex |  |-  RR e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 11 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 12 | 4 6 8 10 10 11 | off |  |-  ( ph -> ( F oF x. G ) : RR --> RR ) | 
						
							| 13 |  | i1frn |  |-  ( F e. dom S.1 -> ran F e. Fin ) | 
						
							| 14 | 1 13 | syl |  |-  ( ph -> ran F e. Fin ) | 
						
							| 15 |  | i1frn |  |-  ( G e. dom S.1 -> ran G e. Fin ) | 
						
							| 16 | 2 15 | syl |  |-  ( ph -> ran G e. Fin ) | 
						
							| 17 |  | xpfi |  |-  ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) | 
						
							| 18 | 14 16 17 | syl2anc |  |-  ( ph -> ( ran F X. ran G ) e. Fin ) | 
						
							| 19 |  | eqid |  |-  ( u e. ran F , v e. ran G |-> ( u x. v ) ) = ( u e. ran F , v e. ran G |-> ( u x. v ) ) | 
						
							| 20 |  | ovex |  |-  ( u x. v ) e. _V | 
						
							| 21 | 19 20 | fnmpoi |  |-  ( u e. ran F , v e. ran G |-> ( u x. v ) ) Fn ( ran F X. ran G ) | 
						
							| 22 |  | dffn4 |  |-  ( ( u e. ran F , v e. ran G |-> ( u x. v ) ) Fn ( ran F X. ran G ) <-> ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) | 
						
							| 23 | 21 22 | mpbi |  |-  ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) | 
						
							| 24 |  | fofi |  |-  ( ( ( ran F X. ran G ) e. Fin /\ ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) -> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) e. Fin ) | 
						
							| 25 | 18 23 24 | sylancl |  |-  ( ph -> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) e. Fin ) | 
						
							| 26 |  | eqid |  |-  ( x x. y ) = ( x x. y ) | 
						
							| 27 |  | rspceov |  |-  ( ( x e. ran F /\ y e. ran G /\ ( x x. y ) = ( x x. y ) ) -> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) | 
						
							| 28 | 26 27 | mp3an3 |  |-  ( ( x e. ran F /\ y e. ran G ) -> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) | 
						
							| 29 |  | ovex |  |-  ( x x. y ) e. _V | 
						
							| 30 |  | eqeq1 |  |-  ( w = ( x x. y ) -> ( w = ( u x. v ) <-> ( x x. y ) = ( u x. v ) ) ) | 
						
							| 31 | 30 | 2rexbidv |  |-  ( w = ( x x. y ) -> ( E. u e. ran F E. v e. ran G w = ( u x. v ) <-> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) ) | 
						
							| 32 | 29 31 | elab |  |-  ( ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } <-> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) | 
						
							| 33 | 28 32 | sylibr |  |-  ( ( x e. ran F /\ y e. ran G ) -> ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) | 
						
							| 35 | 6 | ffnd |  |-  ( ph -> F Fn RR ) | 
						
							| 36 |  | dffn3 |  |-  ( F Fn RR <-> F : RR --> ran F ) | 
						
							| 37 | 35 36 | sylib |  |-  ( ph -> F : RR --> ran F ) | 
						
							| 38 | 8 | ffnd |  |-  ( ph -> G Fn RR ) | 
						
							| 39 |  | dffn3 |  |-  ( G Fn RR <-> G : RR --> ran G ) | 
						
							| 40 | 38 39 | sylib |  |-  ( ph -> G : RR --> ran G ) | 
						
							| 41 | 34 37 40 10 10 11 | off |  |-  ( ph -> ( F oF x. G ) : RR --> { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) | 
						
							| 42 | 41 | frnd |  |-  ( ph -> ran ( F oF x. G ) C_ { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) | 
						
							| 43 | 19 | rnmpo |  |-  ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) = { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } | 
						
							| 44 | 42 43 | sseqtrrdi |  |-  ( ph -> ran ( F oF x. G ) C_ ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) | 
						
							| 45 | 25 44 | ssfid |  |-  ( ph -> ran ( F oF x. G ) e. Fin ) | 
						
							| 46 | 12 | frnd |  |-  ( ph -> ran ( F oF x. G ) C_ RR ) | 
						
							| 47 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 48 | 46 47 | sstrdi |  |-  ( ph -> ran ( F oF x. G ) C_ CC ) | 
						
							| 49 | 48 | ssdifd |  |-  ( ph -> ( ran ( F oF x. G ) \ { 0 } ) C_ ( CC \ { 0 } ) ) | 
						
							| 50 | 49 | sselda |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> y e. ( CC \ { 0 } ) ) | 
						
							| 51 | 1 2 | i1fmullem |  |-  ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) = U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) | 
						
							| 52 | 50 51 | syldan |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) = U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) | 
						
							| 53 |  | difss |  |-  ( ran G \ { 0 } ) C_ ran G | 
						
							| 54 |  | ssfi |  |-  ( ( ran G e. Fin /\ ( ran G \ { 0 } ) C_ ran G ) -> ( ran G \ { 0 } ) e. Fin ) | 
						
							| 55 | 16 53 54 | sylancl |  |-  ( ph -> ( ran G \ { 0 } ) e. Fin ) | 
						
							| 56 |  | i1fima |  |-  ( F e. dom S.1 -> ( `' F " { ( y / z ) } ) e. dom vol ) | 
						
							| 57 | 1 56 | syl |  |-  ( ph -> ( `' F " { ( y / z ) } ) e. dom vol ) | 
						
							| 58 |  | i1fima |  |-  ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) | 
						
							| 59 | 2 58 | syl |  |-  ( ph -> ( `' G " { z } ) e. dom vol ) | 
						
							| 60 |  | inmbl |  |-  ( ( ( `' F " { ( y / z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 61 | 57 59 60 | syl2anc |  |-  ( ph -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 62 | 61 | ralrimivw |  |-  ( ph -> A. z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 63 |  | finiunmbl |  |-  ( ( ( ran G \ { 0 } ) e. Fin /\ A. z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 64 | 55 62 63 | syl2anc |  |-  ( ph -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 66 | 52 65 | eqeltrd |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) e. dom vol ) | 
						
							| 67 |  | mblvol |  |-  ( ( `' ( F oF x. G ) " { y } ) e. dom vol -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` ( `' ( F oF x. G ) " { y } ) ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` ( `' ( F oF x. G ) " { y } ) ) ) | 
						
							| 69 |  | mblss |  |-  ( ( `' ( F oF x. G ) " { y } ) e. dom vol -> ( `' ( F oF x. G ) " { y } ) C_ RR ) | 
						
							| 70 | 66 69 | syl |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) C_ RR ) | 
						
							| 71 | 55 | adantr |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( ran G \ { 0 } ) e. Fin ) | 
						
							| 72 |  | inss2 |  |-  ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) | 
						
							| 73 | 72 | a1i |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) | 
						
							| 74 | 59 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) e. dom vol ) | 
						
							| 75 |  | mblss |  |-  ( ( `' G " { z } ) e. dom vol -> ( `' G " { z } ) C_ RR ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) | 
						
							| 77 |  | mblvol |  |-  ( ( `' G " { z } ) e. dom vol -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) | 
						
							| 78 | 74 77 | syl |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) | 
						
							| 79 | 2 | adantr |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> G e. dom S.1 ) | 
						
							| 80 |  | i1fima2sn |  |-  ( ( G e. dom S.1 /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) | 
						
							| 81 | 79 80 | sylan |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) | 
						
							| 82 | 78 81 | eqeltrrd |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( `' G " { z } ) ) e. RR ) | 
						
							| 83 |  | ovolsscl |  |-  ( ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) /\ ( `' G " { z } ) C_ RR /\ ( vol* ` ( `' G " { z } ) ) e. RR ) -> ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) | 
						
							| 84 | 73 76 82 83 | syl3anc |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) | 
						
							| 85 | 71 84 | fsumrecl |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) | 
						
							| 86 | 52 | fveq2d |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 87 |  | mblss |  |-  ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) | 
						
							| 88 | 61 87 | syl |  |-  ( ph -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) | 
						
							| 89 | 88 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) | 
						
							| 90 | 89 84 | jca |  |-  ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) | 
						
							| 91 | 90 | ralrimiva |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> A. z e. ( ran G \ { 0 } ) ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) | 
						
							| 92 |  | ovolfiniun |  |-  ( ( ( ran G \ { 0 } ) e. Fin /\ A. z e. ( ran G \ { 0 } ) ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) -> ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 93 | 71 91 92 | syl2anc |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 94 | 86 93 | eqbrtrd |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 95 |  | ovollecl |  |-  ( ( ( `' ( F oF x. G ) " { y } ) C_ RR /\ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR /\ ( vol* ` ( `' ( F oF x. G ) " { y } ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) | 
						
							| 96 | 70 85 94 95 | syl3anc |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) | 
						
							| 97 | 68 96 | eqeltrd |  |-  ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) | 
						
							| 98 | 12 45 66 97 | i1fd |  |-  ( ph -> ( F oF x. G ) e. dom S.1 ) |