| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
| 3 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 4 |
3
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 5 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 6 |
1 5
|
syl |
|- ( ph -> F : RR --> RR ) |
| 7 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
| 8 |
2 7
|
syl |
|- ( ph -> G : RR --> RR ) |
| 9 |
|
reex |
|- RR e. _V |
| 10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
| 11 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 12 |
4 6 8 10 10 11
|
off |
|- ( ph -> ( F oF x. G ) : RR --> RR ) |
| 13 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
| 14 |
1 13
|
syl |
|- ( ph -> ran F e. Fin ) |
| 15 |
|
i1frn |
|- ( G e. dom S.1 -> ran G e. Fin ) |
| 16 |
2 15
|
syl |
|- ( ph -> ran G e. Fin ) |
| 17 |
|
xpfi |
|- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
| 18 |
14 16 17
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) e. Fin ) |
| 19 |
|
eqid |
|- ( u e. ran F , v e. ran G |-> ( u x. v ) ) = ( u e. ran F , v e. ran G |-> ( u x. v ) ) |
| 20 |
|
ovex |
|- ( u x. v ) e. _V |
| 21 |
19 20
|
fnmpoi |
|- ( u e. ran F , v e. ran G |-> ( u x. v ) ) Fn ( ran F X. ran G ) |
| 22 |
|
dffn4 |
|- ( ( u e. ran F , v e. ran G |-> ( u x. v ) ) Fn ( ran F X. ran G ) <-> ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) |
| 23 |
21 22
|
mpbi |
|- ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) |
| 24 |
|
fofi |
|- ( ( ( ran F X. ran G ) e. Fin /\ ( u e. ran F , v e. ran G |-> ( u x. v ) ) : ( ran F X. ran G ) -onto-> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) -> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) e. Fin ) |
| 25 |
18 23 24
|
sylancl |
|- ( ph -> ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) e. Fin ) |
| 26 |
|
eqid |
|- ( x x. y ) = ( x x. y ) |
| 27 |
|
rspceov |
|- ( ( x e. ran F /\ y e. ran G /\ ( x x. y ) = ( x x. y ) ) -> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) |
| 28 |
26 27
|
mp3an3 |
|- ( ( x e. ran F /\ y e. ran G ) -> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) |
| 29 |
|
ovex |
|- ( x x. y ) e. _V |
| 30 |
|
eqeq1 |
|- ( w = ( x x. y ) -> ( w = ( u x. v ) <-> ( x x. y ) = ( u x. v ) ) ) |
| 31 |
30
|
2rexbidv |
|- ( w = ( x x. y ) -> ( E. u e. ran F E. v e. ran G w = ( u x. v ) <-> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) ) |
| 32 |
29 31
|
elab |
|- ( ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } <-> E. u e. ran F E. v e. ran G ( x x. y ) = ( u x. v ) ) |
| 33 |
28 32
|
sylibr |
|- ( ( x e. ran F /\ y e. ran G ) -> ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x x. y ) e. { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 35 |
6
|
ffnd |
|- ( ph -> F Fn RR ) |
| 36 |
|
dffn3 |
|- ( F Fn RR <-> F : RR --> ran F ) |
| 37 |
35 36
|
sylib |
|- ( ph -> F : RR --> ran F ) |
| 38 |
8
|
ffnd |
|- ( ph -> G Fn RR ) |
| 39 |
|
dffn3 |
|- ( G Fn RR <-> G : RR --> ran G ) |
| 40 |
38 39
|
sylib |
|- ( ph -> G : RR --> ran G ) |
| 41 |
34 37 40 10 10 11
|
off |
|- ( ph -> ( F oF x. G ) : RR --> { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 42 |
41
|
frnd |
|- ( ph -> ran ( F oF x. G ) C_ { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } ) |
| 43 |
19
|
rnmpo |
|- ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) = { w | E. u e. ran F E. v e. ran G w = ( u x. v ) } |
| 44 |
42 43
|
sseqtrrdi |
|- ( ph -> ran ( F oF x. G ) C_ ran ( u e. ran F , v e. ran G |-> ( u x. v ) ) ) |
| 45 |
25 44
|
ssfid |
|- ( ph -> ran ( F oF x. G ) e. Fin ) |
| 46 |
12
|
frnd |
|- ( ph -> ran ( F oF x. G ) C_ RR ) |
| 47 |
|
ax-resscn |
|- RR C_ CC |
| 48 |
46 47
|
sstrdi |
|- ( ph -> ran ( F oF x. G ) C_ CC ) |
| 49 |
48
|
ssdifd |
|- ( ph -> ( ran ( F oF x. G ) \ { 0 } ) C_ ( CC \ { 0 } ) ) |
| 50 |
49
|
sselda |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> y e. ( CC \ { 0 } ) ) |
| 51 |
1 2
|
i1fmullem |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) = U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) |
| 52 |
50 51
|
syldan |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) = U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) |
| 53 |
|
difss |
|- ( ran G \ { 0 } ) C_ ran G |
| 54 |
|
ssfi |
|- ( ( ran G e. Fin /\ ( ran G \ { 0 } ) C_ ran G ) -> ( ran G \ { 0 } ) e. Fin ) |
| 55 |
16 53 54
|
sylancl |
|- ( ph -> ( ran G \ { 0 } ) e. Fin ) |
| 56 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { ( y / z ) } ) e. dom vol ) |
| 57 |
1 56
|
syl |
|- ( ph -> ( `' F " { ( y / z ) } ) e. dom vol ) |
| 58 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
| 59 |
2 58
|
syl |
|- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 60 |
|
inmbl |
|- ( ( ( `' F " { ( y / z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 61 |
57 59 60
|
syl2anc |
|- ( ph -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 62 |
61
|
ralrimivw |
|- ( ph -> A. z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 63 |
|
finiunmbl |
|- ( ( ( ran G \ { 0 } ) e. Fin /\ A. z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 64 |
55 62 63
|
syl2anc |
|- ( ph -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 66 |
52 65
|
eqeltrd |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) e. dom vol ) |
| 67 |
|
mblvol |
|- ( ( `' ( F oF x. G ) " { y } ) e. dom vol -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` ( `' ( F oF x. G ) " { y } ) ) ) |
| 68 |
66 67
|
syl |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` ( `' ( F oF x. G ) " { y } ) ) ) |
| 69 |
|
mblss |
|- ( ( `' ( F oF x. G ) " { y } ) e. dom vol -> ( `' ( F oF x. G ) " { y } ) C_ RR ) |
| 70 |
66 69
|
syl |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( `' ( F oF x. G ) " { y } ) C_ RR ) |
| 71 |
55
|
adantr |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( ran G \ { 0 } ) e. Fin ) |
| 72 |
|
inss2 |
|- ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
| 73 |
72
|
a1i |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
| 74 |
59
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) e. dom vol ) |
| 75 |
|
mblss |
|- ( ( `' G " { z } ) e. dom vol -> ( `' G " { z } ) C_ RR ) |
| 76 |
74 75
|
syl |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) |
| 77 |
|
mblvol |
|- ( ( `' G " { z } ) e. dom vol -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) |
| 78 |
74 77
|
syl |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol* ` ( `' G " { z } ) ) ) |
| 79 |
2
|
adantr |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> G e. dom S.1 ) |
| 80 |
|
i1fima2sn |
|- ( ( G e. dom S.1 /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) |
| 81 |
79 80
|
sylan |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) e. RR ) |
| 82 |
78 81
|
eqeltrrd |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( `' G " { z } ) ) e. RR ) |
| 83 |
|
ovolsscl |
|- ( ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) /\ ( `' G " { z } ) C_ RR /\ ( vol* ` ( `' G " { z } ) ) e. RR ) -> ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 84 |
73 76 82 83
|
syl3anc |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 85 |
71 84
|
fsumrecl |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 86 |
52
|
fveq2d |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) = ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 87 |
|
mblss |
|- ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) e. dom vol -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
| 88 |
61 87
|
syl |
|- ( ph -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
| 89 |
88
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR ) |
| 90 |
89 84
|
jca |
|- ( ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) /\ z e. ( ran G \ { 0 } ) ) -> ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 91 |
90
|
ralrimiva |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> A. z e. ( ran G \ { 0 } ) ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) |
| 92 |
|
ovolfiniun |
|- ( ( ( ran G \ { 0 } ) e. Fin /\ A. z e. ( ran G \ { 0 } ) ( ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) C_ RR /\ ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) ) -> ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 93 |
71 91 92
|
syl2anc |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` U_ z e. ( ran G \ { 0 } ) ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 94 |
86 93
|
eqbrtrd |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 95 |
|
ovollecl |
|- ( ( ( `' ( F oF x. G ) " { y } ) C_ RR /\ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) e. RR /\ ( vol* ` ( `' ( F oF x. G ) " { y } ) ) <_ sum_ z e. ( ran G \ { 0 } ) ( vol* ` ( ( `' F " { ( y / z ) } ) i^i ( `' G " { z } ) ) ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) |
| 96 |
70 85 94 95
|
syl3anc |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol* ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) |
| 97 |
68 96
|
eqeltrd |
|- ( ( ph /\ y e. ( ran ( F oF x. G ) \ { 0 } ) ) -> ( vol ` ( `' ( F oF x. G ) " { y } ) ) e. RR ) |
| 98 |
12 45 66 97
|
i1fd |
|- ( ph -> ( F oF x. G ) e. dom S.1 ) |