| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fmulc.2 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fmulc.3 |
|- ( ph -> A e. RR ) |
| 3 |
|
reex |
|- RR e. _V |
| 4 |
3
|
a1i |
|- ( ( ph /\ A = 0 ) -> RR e. _V ) |
| 5 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 6 |
1 5
|
syl |
|- ( ph -> F : RR --> RR ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ A = 0 ) -> F : RR --> RR ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ A = 0 ) -> A e. RR ) |
| 9 |
|
0red |
|- ( ( ph /\ A = 0 ) -> 0 e. RR ) |
| 10 |
|
simplr |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 ) |
| 11 |
10
|
oveq1d |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) ) |
| 12 |
|
mul02lem2 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
| 13 |
12
|
adantl |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 14 |
11 13
|
eqtrd |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 ) |
| 15 |
4 7 8 9 14
|
caofid2 |
|- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
| 16 |
|
i1f0 |
|- ( RR X. { 0 } ) e. dom S.1 |
| 17 |
15 16
|
eqeltrdi |
|- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 18 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 20 |
|
fconst6g |
|- ( A e. RR -> ( RR X. { A } ) : RR --> RR ) |
| 21 |
2 20
|
syl |
|- ( ph -> ( RR X. { A } ) : RR --> RR ) |
| 22 |
3
|
a1i |
|- ( ph -> RR e. _V ) |
| 23 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 24 |
19 21 6 22 22 23
|
off |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 26 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
| 27 |
1 26
|
syl |
|- ( ph -> ran F e. Fin ) |
| 28 |
|
ovex |
|- ( A x. y ) e. _V |
| 29 |
|
eqid |
|- ( y e. ran F |-> ( A x. y ) ) = ( y e. ran F |-> ( A x. y ) ) |
| 30 |
28 29
|
fnmpti |
|- ( y e. ran F |-> ( A x. y ) ) Fn ran F |
| 31 |
|
dffn4 |
|- ( ( y e. ran F |-> ( A x. y ) ) Fn ran F <-> ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) ) |
| 32 |
30 31
|
mpbi |
|- ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) |
| 33 |
|
fofi |
|- ( ( ran F e. Fin /\ ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) ) -> ran ( y e. ran F |-> ( A x. y ) ) e. Fin ) |
| 34 |
27 32 33
|
sylancl |
|- ( ph -> ran ( y e. ran F |-> ( A x. y ) ) e. Fin ) |
| 35 |
|
id |
|- ( w e. ran F -> w e. ran F ) |
| 36 |
|
elsni |
|- ( x e. { A } -> x = A ) |
| 37 |
36
|
oveq1d |
|- ( x e. { A } -> ( x x. w ) = ( A x. w ) ) |
| 38 |
|
oveq2 |
|- ( y = w -> ( A x. y ) = ( A x. w ) ) |
| 39 |
38
|
rspceeqv |
|- ( ( w e. ran F /\ ( x x. w ) = ( A x. w ) ) -> E. y e. ran F ( x x. w ) = ( A x. y ) ) |
| 40 |
35 37 39
|
syl2anr |
|- ( ( x e. { A } /\ w e. ran F ) -> E. y e. ran F ( x x. w ) = ( A x. y ) ) |
| 41 |
|
ovex |
|- ( x x. w ) e. _V |
| 42 |
|
eqeq1 |
|- ( z = ( x x. w ) -> ( z = ( A x. y ) <-> ( x x. w ) = ( A x. y ) ) ) |
| 43 |
42
|
rexbidv |
|- ( z = ( x x. w ) -> ( E. y e. ran F z = ( A x. y ) <-> E. y e. ran F ( x x. w ) = ( A x. y ) ) ) |
| 44 |
41 43
|
elab |
|- ( ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } <-> E. y e. ran F ( x x. w ) = ( A x. y ) ) |
| 45 |
40 44
|
sylibr |
|- ( ( x e. { A } /\ w e. ran F ) -> ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ ( x e. { A } /\ w e. ran F ) ) -> ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } ) |
| 47 |
|
fconstg |
|- ( A e. RR -> ( RR X. { A } ) : RR --> { A } ) |
| 48 |
2 47
|
syl |
|- ( ph -> ( RR X. { A } ) : RR --> { A } ) |
| 49 |
6
|
ffnd |
|- ( ph -> F Fn RR ) |
| 50 |
|
dffn3 |
|- ( F Fn RR <-> F : RR --> ran F ) |
| 51 |
49 50
|
sylib |
|- ( ph -> F : RR --> ran F ) |
| 52 |
46 48 51 22 22 23
|
off |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> { z | E. y e. ran F z = ( A x. y ) } ) |
| 53 |
52
|
frnd |
|- ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ { z | E. y e. ran F z = ( A x. y ) } ) |
| 54 |
29
|
rnmpt |
|- ran ( y e. ran F |-> ( A x. y ) ) = { z | E. y e. ran F z = ( A x. y ) } |
| 55 |
53 54
|
sseqtrrdi |
|- ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ ran ( y e. ran F |-> ( A x. y ) ) ) |
| 56 |
34 55
|
ssfid |
|- ( ph -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 58 |
24
|
frnd |
|- ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ RR ) |
| 59 |
58
|
ssdifssd |
|- ( ph -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
| 61 |
60
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y e. RR ) |
| 62 |
1 2
|
i1fmulclem |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) = ( `' F " { ( y / A ) } ) ) |
| 63 |
61 62
|
syldan |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) = ( `' F " { ( y / A ) } ) ) |
| 64 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { ( y / A ) } ) e. dom vol ) |
| 65 |
1 64
|
syl |
|- ( ph -> ( `' F " { ( y / A ) } ) e. dom vol ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' F " { ( y / A ) } ) e. dom vol ) |
| 67 |
63 66
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) e. dom vol ) |
| 68 |
63
|
fveq2d |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) ) = ( vol ` ( `' F " { ( y / A ) } ) ) ) |
| 69 |
1
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 ) |
| 70 |
2
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR ) |
| 71 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
| 72 |
61 70 71
|
redivcld |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) e. RR ) |
| 73 |
61
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y e. CC ) |
| 74 |
70
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 75 |
|
eldifsni |
|- ( y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> y =/= 0 ) |
| 76 |
75
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y =/= 0 ) |
| 77 |
73 74 76 71
|
divne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) =/= 0 ) |
| 78 |
|
eldifsn |
|- ( ( y / A ) e. ( RR \ { 0 } ) <-> ( ( y / A ) e. RR /\ ( y / A ) =/= 0 ) ) |
| 79 |
72 77 78
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) e. ( RR \ { 0 } ) ) |
| 80 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ ( y / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( y / A ) } ) ) e. RR ) |
| 81 |
69 79 80
|
syl2anc |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( y / A ) } ) ) e. RR ) |
| 82 |
68 81
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) ) e. RR ) |
| 83 |
25 57 67 82
|
i1fd |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 84 |
17 83
|
pm2.61dane |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |