| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fmulc.2 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fmulc.3 |
|- ( ph -> A e. RR ) |
| 3 |
|
reex |
|- RR e. _V |
| 4 |
3
|
a1i |
|- ( ph -> RR e. _V ) |
| 5 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 6 |
1 5
|
syl |
|- ( ph -> F : RR --> RR ) |
| 7 |
6
|
ffnd |
|- ( ph -> F Fn RR ) |
| 8 |
|
eqidd |
|- ( ( ph /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
| 9 |
4 2 7 8
|
ofc1 |
|- ( ( ph /\ z e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` z ) = ( A x. ( F ` z ) ) ) |
| 10 |
9
|
ad4ant14 |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` z ) = ( A x. ( F ` z ) ) ) |
| 11 |
10
|
eqeq1d |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` z ) = B <-> ( A x. ( F ` z ) ) = B ) ) |
| 12 |
|
eqcom |
|- ( ( F ` z ) = ( B / A ) <-> ( B / A ) = ( F ` z ) ) |
| 13 |
|
simplr |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> B e. RR ) |
| 14 |
13
|
recnd |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> B e. CC ) |
| 15 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> A e. RR ) |
| 16 |
15
|
recnd |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> A e. CC ) |
| 17 |
6
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> F : RR --> RR ) |
| 18 |
17
|
ffvelcdmda |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( F ` z ) e. RR ) |
| 19 |
18
|
recnd |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( F ` z ) e. CC ) |
| 20 |
|
simpllr |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> A =/= 0 ) |
| 21 |
14 16 19 20
|
divmuld |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( B / A ) = ( F ` z ) <-> ( A x. ( F ` z ) ) = B ) ) |
| 22 |
12 21
|
bitrid |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( F ` z ) = ( B / A ) <-> ( A x. ( F ` z ) ) = B ) ) |
| 23 |
11 22
|
bitr4d |
|- ( ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) /\ z e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` z ) = B <-> ( F ` z ) = ( B / A ) ) ) |
| 24 |
23
|
pm5.32da |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( ( z e. RR /\ ( ( ( RR X. { A } ) oF x. F ) ` z ) = B ) <-> ( z e. RR /\ ( F ` z ) = ( B / A ) ) ) ) |
| 25 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 27 |
|
fconstg |
|- ( A e. RR -> ( RR X. { A } ) : RR --> { A } ) |
| 28 |
2 27
|
syl |
|- ( ph -> ( RR X. { A } ) : RR --> { A } ) |
| 29 |
2
|
snssd |
|- ( ph -> { A } C_ RR ) |
| 30 |
28 29
|
fssd |
|- ( ph -> ( RR X. { A } ) : RR --> RR ) |
| 31 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 32 |
26 30 6 4 4 31
|
off |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 34 |
33
|
ffnd |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( ( RR X. { A } ) oF x. F ) Fn RR ) |
| 35 |
|
fniniseg |
|- ( ( ( RR X. { A } ) oF x. F ) Fn RR -> ( z e. ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) <-> ( z e. RR /\ ( ( ( RR X. { A } ) oF x. F ) ` z ) = B ) ) ) |
| 36 |
34 35
|
syl |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( z e. ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) <-> ( z e. RR /\ ( ( ( RR X. { A } ) oF x. F ) ` z ) = B ) ) ) |
| 37 |
17
|
ffnd |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> F Fn RR ) |
| 38 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( B / A ) } ) <-> ( z e. RR /\ ( F ` z ) = ( B / A ) ) ) ) |
| 39 |
37 38
|
syl |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( z e. ( `' F " { ( B / A ) } ) <-> ( z e. RR /\ ( F ` z ) = ( B / A ) ) ) ) |
| 40 |
24 36 39
|
3bitr4d |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( z e. ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) <-> z e. ( `' F " { ( B / A ) } ) ) ) |
| 41 |
40
|
eqrdv |
|- ( ( ( ph /\ A =/= 0 ) /\ B e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { B } ) = ( `' F " { ( B / A ) } ) ) |