Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
3 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
4 |
1 3
|
syl |
|- ( ph -> F : RR --> RR ) |
5 |
4
|
ffnd |
|- ( ph -> F Fn RR ) |
6 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
7 |
2 6
|
syl |
|- ( ph -> G : RR --> RR ) |
8 |
7
|
ffnd |
|- ( ph -> G Fn RR ) |
9 |
|
reex |
|- RR e. _V |
10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
11 |
|
inidm |
|- ( RR i^i RR ) = RR |
12 |
5 8 10 10 11
|
offn |
|- ( ph -> ( F oF x. G ) Fn RR ) |
13 |
12
|
adantr |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( F oF x. G ) Fn RR ) |
14 |
|
fniniseg |
|- ( ( F oF x. G ) Fn RR -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) ) ) |
15 |
13 14
|
syl |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) ) ) |
16 |
5
|
adantr |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> F Fn RR ) |
17 |
8
|
adantr |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> G Fn RR ) |
18 |
9
|
a1i |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> RR e. _V ) |
19 |
|
eqidd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
20 |
|
eqidd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) |
21 |
16 17 18 18 11 19 20
|
ofval |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( ( F oF x. G ) ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
22 |
21
|
eqeq1d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( ( ( F oF x. G ) ` z ) = A <-> ( ( F ` z ) x. ( G ` z ) ) = A ) ) |
23 |
22
|
pm5.32da |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) <-> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
24 |
8
|
ad2antrr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> G Fn RR ) |
25 |
|
simprl |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. RR ) |
26 |
|
fnfvelrn |
|- ( ( G Fn RR /\ z e. RR ) -> ( G ` z ) e. ran G ) |
27 |
24 25 26
|
syl2anc |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. ran G ) |
28 |
|
eldifsni |
|- ( A e. ( CC \ { 0 } ) -> A =/= 0 ) |
29 |
28
|
ad2antlr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> A =/= 0 ) |
30 |
|
simprr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) |
31 |
4
|
ad2antrr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> F : RR --> RR ) |
32 |
31 25
|
ffvelrnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) e. RR ) |
33 |
32
|
recnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) e. CC ) |
34 |
33
|
mul01d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. 0 ) = 0 ) |
35 |
29 30 34
|
3netr4d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. ( G ` z ) ) =/= ( ( F ` z ) x. 0 ) ) |
36 |
|
oveq2 |
|- ( ( G ` z ) = 0 -> ( ( F ` z ) x. ( G ` z ) ) = ( ( F ` z ) x. 0 ) ) |
37 |
36
|
necon3i |
|- ( ( ( F ` z ) x. ( G ` z ) ) =/= ( ( F ` z ) x. 0 ) -> ( G ` z ) =/= 0 ) |
38 |
35 37
|
syl |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) =/= 0 ) |
39 |
|
eldifsn |
|- ( ( G ` z ) e. ( ran G \ { 0 } ) <-> ( ( G ` z ) e. ran G /\ ( G ` z ) =/= 0 ) ) |
40 |
27 38 39
|
sylanbrc |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. ( ran G \ { 0 } ) ) |
41 |
7
|
ad2antrr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> G : RR --> RR ) |
42 |
41 25
|
ffvelrnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. RR ) |
43 |
42
|
recnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. CC ) |
44 |
33 43 38
|
divcan4d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( ( F ` z ) x. ( G ` z ) ) / ( G ` z ) ) = ( F ` z ) ) |
45 |
30
|
oveq1d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( ( F ` z ) x. ( G ` z ) ) / ( G ` z ) ) = ( A / ( G ` z ) ) ) |
46 |
44 45
|
eqtr3d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) = ( A / ( G ` z ) ) ) |
47 |
31
|
ffnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> F Fn RR ) |
48 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( A / ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / ( G ` z ) ) ) ) ) |
49 |
47 48
|
syl |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( z e. ( `' F " { ( A / ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / ( G ` z ) ) ) ) ) |
50 |
25 46 49
|
mpbir2and |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( `' F " { ( A / ( G ` z ) ) } ) ) |
51 |
|
eqidd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) = ( G ` z ) ) |
52 |
|
fniniseg |
|- ( G Fn RR -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
53 |
24 52
|
syl |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
54 |
25 51 53
|
mpbir2and |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( `' G " { ( G ` z ) } ) ) |
55 |
50 54
|
elind |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
56 |
|
oveq2 |
|- ( y = ( G ` z ) -> ( A / y ) = ( A / ( G ` z ) ) ) |
57 |
56
|
sneqd |
|- ( y = ( G ` z ) -> { ( A / y ) } = { ( A / ( G ` z ) ) } ) |
58 |
57
|
imaeq2d |
|- ( y = ( G ` z ) -> ( `' F " { ( A / y ) } ) = ( `' F " { ( A / ( G ` z ) ) } ) ) |
59 |
|
sneq |
|- ( y = ( G ` z ) -> { y } = { ( G ` z ) } ) |
60 |
59
|
imaeq2d |
|- ( y = ( G ` z ) -> ( `' G " { y } ) = ( `' G " { ( G ` z ) } ) ) |
61 |
58 60
|
ineq12d |
|- ( y = ( G ` z ) -> ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) = ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
62 |
61
|
eleq2d |
|- ( y = ( G ` z ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) ) |
63 |
62
|
rspcev |
|- ( ( ( G ` z ) e. ( ran G \ { 0 } ) /\ z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
64 |
40 55 63
|
syl2anc |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
65 |
64
|
ex |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
66 |
|
fniniseg |
|- ( F Fn RR -> ( z e. ( `' F " { ( A / y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / y ) ) ) ) |
67 |
16 66
|
syl |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' F " { ( A / y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / y ) ) ) ) |
68 |
|
fniniseg |
|- ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
69 |
17 68
|
syl |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
70 |
67 69
|
anbi12d |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. ( `' F " { ( A / y ) } ) /\ z e. ( `' G " { y } ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A / y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) ) |
71 |
|
elin |
|- ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. ( `' F " { ( A / y ) } ) /\ z e. ( `' G " { y } ) ) ) |
72 |
|
anandi |
|- ( ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A / y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) |
73 |
70 71 72
|
3bitr4g |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) ) ) |
74 |
73
|
adantr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) ) ) |
75 |
|
eldifi |
|- ( A e. ( CC \ { 0 } ) -> A e. CC ) |
76 |
75
|
ad2antlr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> A e. CC ) |
77 |
7
|
ad2antrr |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> G : RR --> RR ) |
78 |
77
|
frnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ran G C_ RR ) |
79 |
|
simprl |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. ( ran G \ { 0 } ) ) |
80 |
|
eldifsn |
|- ( y e. ( ran G \ { 0 } ) <-> ( y e. ran G /\ y =/= 0 ) ) |
81 |
79 80
|
sylib |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( y e. ran G /\ y =/= 0 ) ) |
82 |
81
|
simpld |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. ran G ) |
83 |
78 82
|
sseldd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. RR ) |
84 |
83
|
recnd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. CC ) |
85 |
81
|
simprd |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y =/= 0 ) |
86 |
76 84 85
|
divcan1d |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( ( A / y ) x. y ) = A ) |
87 |
|
oveq12 |
|- ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = ( ( A / y ) x. y ) ) |
88 |
87
|
eqeq1d |
|- ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( ( F ` z ) x. ( G ` z ) ) = A <-> ( ( A / y ) x. y ) = A ) ) |
89 |
86 88
|
syl5ibrcom |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) ) |
90 |
89
|
anassrs |
|- ( ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) ) |
91 |
90
|
imdistanda |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
92 |
74 91
|
sylbid |
|- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
93 |
92
|
rexlimdva |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
94 |
65 93
|
impbid |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
95 |
15 23 94
|
3bitrd |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
96 |
|
eliun |
|- ( z e. U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
97 |
95 96
|
bitr4di |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> z e. U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
98 |
97
|
eqrdv |
|- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { A } ) = U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |