| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 |  |-  ( ph -> F e. dom S.1 ) | 
						
							| 2 |  | i1fadd.2 |  |-  ( ph -> G e. dom S.1 ) | 
						
							| 3 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> F : RR --> RR ) | 
						
							| 5 | 4 | ffnd |  |-  ( ph -> F Fn RR ) | 
						
							| 6 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> G : RR --> RR ) | 
						
							| 8 | 7 | ffnd |  |-  ( ph -> G Fn RR ) | 
						
							| 9 |  | reex |  |-  RR e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 11 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 12 | 5 8 10 10 11 | offn |  |-  ( ph -> ( F oF x. G ) Fn RR ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( F oF x. G ) Fn RR ) | 
						
							| 14 |  | fniniseg |  |-  ( ( F oF x. G ) Fn RR -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) ) ) | 
						
							| 16 | 5 | adantr |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> F Fn RR ) | 
						
							| 17 | 8 | adantr |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> G Fn RR ) | 
						
							| 18 | 9 | a1i |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> RR e. _V ) | 
						
							| 19 |  | eqidd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) | 
						
							| 20 |  | eqidd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 21 | 16 17 18 18 11 19 20 | ofval |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( ( F oF x. G ) ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( ( ( F oF x. G ) ` z ) = A <-> ( ( F ` z ) x. ( G ` z ) ) = A ) ) | 
						
							| 23 | 22 | pm5.32da |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) <-> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) | 
						
							| 24 | 8 | ad2antrr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> G Fn RR ) | 
						
							| 25 |  | simprl |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. RR ) | 
						
							| 26 |  | fnfvelrn |  |-  ( ( G Fn RR /\ z e. RR ) -> ( G ` z ) e. ran G ) | 
						
							| 27 | 24 25 26 | syl2anc |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. ran G ) | 
						
							| 28 |  | eldifsni |  |-  ( A e. ( CC \ { 0 } ) -> A =/= 0 ) | 
						
							| 29 | 28 | ad2antlr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> A =/= 0 ) | 
						
							| 30 |  | simprr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) | 
						
							| 31 | 4 | ad2antrr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> F : RR --> RR ) | 
						
							| 32 | 31 25 | ffvelcdmd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) e. CC ) | 
						
							| 34 | 33 | mul01d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. 0 ) = 0 ) | 
						
							| 35 | 29 30 34 | 3netr4d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. ( G ` z ) ) =/= ( ( F ` z ) x. 0 ) ) | 
						
							| 36 |  | oveq2 |  |-  ( ( G ` z ) = 0 -> ( ( F ` z ) x. ( G ` z ) ) = ( ( F ` z ) x. 0 ) ) | 
						
							| 37 | 36 | necon3i |  |-  ( ( ( F ` z ) x. ( G ` z ) ) =/= ( ( F ` z ) x. 0 ) -> ( G ` z ) =/= 0 ) | 
						
							| 38 | 35 37 | syl |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) =/= 0 ) | 
						
							| 39 |  | eldifsn |  |-  ( ( G ` z ) e. ( ran G \ { 0 } ) <-> ( ( G ` z ) e. ran G /\ ( G ` z ) =/= 0 ) ) | 
						
							| 40 | 27 38 39 | sylanbrc |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. ( ran G \ { 0 } ) ) | 
						
							| 41 | 7 | ad2antrr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> G : RR --> RR ) | 
						
							| 42 | 41 25 | ffvelcdmd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. RR ) | 
						
							| 43 | 42 | recnd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. CC ) | 
						
							| 44 | 33 43 38 | divcan4d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( ( F ` z ) x. ( G ` z ) ) / ( G ` z ) ) = ( F ` z ) ) | 
						
							| 45 | 30 | oveq1d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( ( F ` z ) x. ( G ` z ) ) / ( G ` z ) ) = ( A / ( G ` z ) ) ) | 
						
							| 46 | 44 45 | eqtr3d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) = ( A / ( G ` z ) ) ) | 
						
							| 47 | 31 | ffnd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> F Fn RR ) | 
						
							| 48 |  | fniniseg |  |-  ( F Fn RR -> ( z e. ( `' F " { ( A / ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / ( G ` z ) ) ) ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( z e. ( `' F " { ( A / ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / ( G ` z ) ) ) ) ) | 
						
							| 50 | 25 46 49 | mpbir2and |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( `' F " { ( A / ( G ` z ) ) } ) ) | 
						
							| 51 |  | eqidd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 52 |  | fniniseg |  |-  ( G Fn RR -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) | 
						
							| 53 | 24 52 | syl |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) | 
						
							| 54 | 25 51 53 | mpbir2and |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( `' G " { ( G ` z ) } ) ) | 
						
							| 55 | 50 54 | elind |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) | 
						
							| 56 |  | oveq2 |  |-  ( y = ( G ` z ) -> ( A / y ) = ( A / ( G ` z ) ) ) | 
						
							| 57 | 56 | sneqd |  |-  ( y = ( G ` z ) -> { ( A / y ) } = { ( A / ( G ` z ) ) } ) | 
						
							| 58 | 57 | imaeq2d |  |-  ( y = ( G ` z ) -> ( `' F " { ( A / y ) } ) = ( `' F " { ( A / ( G ` z ) ) } ) ) | 
						
							| 59 |  | sneq |  |-  ( y = ( G ` z ) -> { y } = { ( G ` z ) } ) | 
						
							| 60 | 59 | imaeq2d |  |-  ( y = ( G ` z ) -> ( `' G " { y } ) = ( `' G " { ( G ` z ) } ) ) | 
						
							| 61 | 58 60 | ineq12d |  |-  ( y = ( G ` z ) -> ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) = ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) | 
						
							| 62 | 61 | eleq2d |  |-  ( y = ( G ` z ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) ) | 
						
							| 63 | 62 | rspcev |  |-  ( ( ( G ` z ) e. ( ran G \ { 0 } ) /\ z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) | 
						
							| 64 | 40 55 63 | syl2anc |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) | 
						
							| 65 | 64 | ex |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) | 
						
							| 66 |  | fniniseg |  |-  ( F Fn RR -> ( z e. ( `' F " { ( A / y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / y ) ) ) ) | 
						
							| 67 | 16 66 | syl |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' F " { ( A / y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / y ) ) ) ) | 
						
							| 68 |  | fniniseg |  |-  ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) | 
						
							| 69 | 17 68 | syl |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) | 
						
							| 70 | 67 69 | anbi12d |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. ( `' F " { ( A / y ) } ) /\ z e. ( `' G " { y } ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A / y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) ) | 
						
							| 71 |  | elin |  |-  ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. ( `' F " { ( A / y ) } ) /\ z e. ( `' G " { y } ) ) ) | 
						
							| 72 |  | anandi |  |-  ( ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A / y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) | 
						
							| 73 | 70 71 72 | 3bitr4g |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) ) ) | 
						
							| 75 |  | eldifi |  |-  ( A e. ( CC \ { 0 } ) -> A e. CC ) | 
						
							| 76 | 75 | ad2antlr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> A e. CC ) | 
						
							| 77 | 7 | ad2antrr |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> G : RR --> RR ) | 
						
							| 78 | 77 | frnd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ran G C_ RR ) | 
						
							| 79 |  | simprl |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. ( ran G \ { 0 } ) ) | 
						
							| 80 |  | eldifsn |  |-  ( y e. ( ran G \ { 0 } ) <-> ( y e. ran G /\ y =/= 0 ) ) | 
						
							| 81 | 79 80 | sylib |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( y e. ran G /\ y =/= 0 ) ) | 
						
							| 82 | 81 | simpld |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. ran G ) | 
						
							| 83 | 78 82 | sseldd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. RR ) | 
						
							| 84 | 83 | recnd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. CC ) | 
						
							| 85 | 81 | simprd |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y =/= 0 ) | 
						
							| 86 | 76 84 85 | divcan1d |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( ( A / y ) x. y ) = A ) | 
						
							| 87 |  | oveq12 |  |-  ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = ( ( A / y ) x. y ) ) | 
						
							| 88 | 87 | eqeq1d |  |-  ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( ( F ` z ) x. ( G ` z ) ) = A <-> ( ( A / y ) x. y ) = A ) ) | 
						
							| 89 | 86 88 | syl5ibrcom |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) ) | 
						
							| 90 | 89 | anassrs |  |-  ( ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) ) | 
						
							| 91 | 90 | imdistanda |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) | 
						
							| 92 | 74 91 | sylbid |  |-  ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) | 
						
							| 93 | 92 | rexlimdva |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) | 
						
							| 94 | 65 93 | impbid |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) | 
						
							| 95 | 15 23 94 | 3bitrd |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) | 
						
							| 96 |  | eliun |  |-  ( z e. U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) | 
						
							| 97 | 95 96 | bitr4di |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> z e. U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) | 
						
							| 98 | 97 | eqrdv |  |-  ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { A } ) = U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |