| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fpos.1 |  |-  G = ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) | 
						
							| 2 |  | simpr |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> x e. RR ) | 
						
							| 3 | 2 | biantrurd |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 4 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 5 | 4 | ffvelcdmda |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> ( F ` x ) e. RR ) | 
						
							| 6 | 5 | biantrurd |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) ) | 
						
							| 7 |  | elrege0 |  |-  ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) | 
						
							| 8 | 6 7 | bitr4di |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( F ` x ) e. ( 0 [,) +oo ) ) ) | 
						
							| 9 | 4 | adantr |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> F : RR --> RR ) | 
						
							| 10 |  | ffn |  |-  ( F : RR --> RR -> F Fn RR ) | 
						
							| 11 |  | elpreima |  |-  ( F Fn RR -> ( x e. ( `' F " ( 0 [,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 12 | 9 10 11 | 3syl |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> ( x e. ( `' F " ( 0 [,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 13 | 3 8 12 | 3bitr4d |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> x e. ( `' F " ( 0 [,) +oo ) ) ) ) | 
						
							| 14 | 13 | ifbid |  |-  ( ( F e. dom S.1 /\ x e. RR ) -> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) = if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) | 
						
							| 15 | 14 | mpteq2dva |  |-  ( F e. dom S.1 -> ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) ) | 
						
							| 16 | 1 15 | eqtrid |  |-  ( F e. dom S.1 -> G = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) ) | 
						
							| 17 |  | i1fima |  |-  ( F e. dom S.1 -> ( `' F " ( 0 [,) +oo ) ) e. dom vol ) | 
						
							| 18 |  | eqid |  |-  ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) | 
						
							| 19 | 18 | i1fres |  |-  ( ( F e. dom S.1 /\ ( `' F " ( 0 [,) +oo ) ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) e. dom S.1 ) | 
						
							| 20 | 17 19 | mpdan |  |-  ( F e. dom S.1 -> ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) e. dom S.1 ) | 
						
							| 21 | 16 20 | eqeltrd |  |-  ( F e. dom S.1 -> G e. dom S.1 ) |