| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex |  |-  RR e. _V | 
						
							| 2 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 3 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 4 |  | fss |  |-  ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) | 
						
							| 5 | 2 3 4 | sylancl |  |-  ( F e. dom S.1 -> F : RR --> CC ) | 
						
							| 6 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 7 |  | fss |  |-  ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) | 
						
							| 8 | 6 3 7 | sylancl |  |-  ( G e. dom S.1 -> G : RR --> CC ) | 
						
							| 9 |  | ofnegsub |  |-  ( ( RR e. _V /\ F : RR --> CC /\ G : RR --> CC ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) | 
						
							| 10 | 1 5 8 9 | mp3an3an |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) | 
						
							| 11 |  | simpl |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) | 
						
							| 12 |  | simpr |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) | 
						
							| 13 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 14 | 13 | a1i |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> -u 1 e. RR ) | 
						
							| 15 | 12 14 | i1fmulc |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( RR X. { -u 1 } ) oF x. G ) e. dom S.1 ) | 
						
							| 16 | 11 15 | i1fadd |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) e. dom S.1 ) | 
						
							| 17 | 10 16 | eqeltrrd |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF - G ) e. dom S.1 ) |