Metamath Proof Explorer


Theorem i2

Description: _i squared. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion i2
|- ( _i ^ 2 ) = -u 1

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 1 sqvali
 |-  ( _i ^ 2 ) = ( _i x. _i )
3 ixi
 |-  ( _i x. _i ) = -u 1
4 2 3 eqtri
 |-  ( _i ^ 2 ) = -u 1