| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | cnex |  |-  CC e. _V | 
						
							| 3 | 2 | a1i |  |-  ( T. -> CC e. _V ) | 
						
							| 4 |  | sqcl |  |-  ( z e. CC -> ( z ^ 2 ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( T. /\ z e. CC ) -> ( z ^ 2 ) e. CC ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 | 6 | a1i |  |-  ( ( T. /\ z e. CC ) -> 1 e. CC ) | 
						
							| 8 |  | eqidd |  |-  ( T. -> ( z e. CC |-> ( z ^ 2 ) ) = ( z e. CC |-> ( z ^ 2 ) ) ) | 
						
							| 9 |  | fconstmpt |  |-  ( CC X. { 1 } ) = ( z e. CC |-> 1 ) | 
						
							| 10 | 9 | a1i |  |-  ( T. -> ( CC X. { 1 } ) = ( z e. CC |-> 1 ) ) | 
						
							| 11 | 3 5 7 8 10 | offval2 |  |-  ( T. -> ( ( z e. CC |-> ( z ^ 2 ) ) oF + ( CC X. { 1 } ) ) = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ) | 
						
							| 12 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 13 |  | 1z |  |-  1 e. ZZ | 
						
							| 14 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 15 |  | plypow |  |-  ( ( ZZ C_ CC /\ 1 e. ZZ /\ 2 e. NN0 ) -> ( z e. CC |-> ( z ^ 2 ) ) e. ( Poly ` ZZ ) ) | 
						
							| 16 | 12 13 14 15 | mp3an |  |-  ( z e. CC |-> ( z ^ 2 ) ) e. ( Poly ` ZZ ) | 
						
							| 17 | 16 | a1i |  |-  ( T. -> ( z e. CC |-> ( z ^ 2 ) ) e. ( Poly ` ZZ ) ) | 
						
							| 18 |  | plyconst |  |-  ( ( ZZ C_ CC /\ 1 e. ZZ ) -> ( CC X. { 1 } ) e. ( Poly ` ZZ ) ) | 
						
							| 19 | 12 13 18 | mp2an |  |-  ( CC X. { 1 } ) e. ( Poly ` ZZ ) | 
						
							| 20 | 19 | a1i |  |-  ( T. -> ( CC X. { 1 } ) e. ( Poly ` ZZ ) ) | 
						
							| 21 |  | zaddcl |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) | 
						
							| 22 | 21 | adantl |  |-  ( ( T. /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x + y ) e. ZZ ) | 
						
							| 23 | 17 20 22 | plyadd |  |-  ( T. -> ( ( z e. CC |-> ( z ^ 2 ) ) oF + ( CC X. { 1 } ) ) e. ( Poly ` ZZ ) ) | 
						
							| 24 | 11 23 | eqeltrrd |  |-  ( T. -> ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( Poly ` ZZ ) ) | 
						
							| 25 | 24 | mptru |  |-  ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( Poly ` ZZ ) | 
						
							| 26 |  | 0cn |  |-  0 e. CC | 
						
							| 27 |  | sq0i |  |-  ( z = 0 -> ( z ^ 2 ) = 0 ) | 
						
							| 28 | 27 | oveq1d |  |-  ( z = 0 -> ( ( z ^ 2 ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 29 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 30 | 28 29 | eqtrdi |  |-  ( z = 0 -> ( ( z ^ 2 ) + 1 ) = 1 ) | 
						
							| 31 |  | eqid |  |-  ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) | 
						
							| 32 |  | 1ex |  |-  1 e. _V | 
						
							| 33 | 30 31 32 | fvmpt |  |-  ( 0 e. CC -> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) = 1 ) | 
						
							| 34 | 26 33 | ax-mp |  |-  ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) = 1 | 
						
							| 35 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 36 | 34 35 | eqnetri |  |-  ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) =/= 0 | 
						
							| 37 |  | ne0p |  |-  ( ( 0 e. CC /\ ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) =/= 0 ) -> ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) =/= 0p ) | 
						
							| 38 | 26 36 37 | mp2an |  |-  ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) =/= 0p | 
						
							| 39 |  | eldifsn |  |-  ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( Poly ` ZZ ) /\ ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) =/= 0p ) ) | 
						
							| 40 | 25 38 39 | mpbir2an |  |-  ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) | 
						
							| 41 |  | oveq1 |  |-  ( z = _i -> ( z ^ 2 ) = ( _i ^ 2 ) ) | 
						
							| 42 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 43 | 41 42 | eqtrdi |  |-  ( z = _i -> ( z ^ 2 ) = -u 1 ) | 
						
							| 44 | 43 | oveq1d |  |-  ( z = _i -> ( ( z ^ 2 ) + 1 ) = ( -u 1 + 1 ) ) | 
						
							| 45 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 46 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 47 | 6 45 46 | addcomli |  |-  ( -u 1 + 1 ) = 0 | 
						
							| 48 | 44 47 | eqtrdi |  |-  ( z = _i -> ( ( z ^ 2 ) + 1 ) = 0 ) | 
						
							| 49 |  | c0ex |  |-  0 e. _V | 
						
							| 50 | 48 31 49 | fvmpt |  |-  ( _i e. CC -> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 ) | 
						
							| 51 | 1 50 | ax-mp |  |-  ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 | 
						
							| 52 |  | fveq1 |  |-  ( f = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) -> ( f ` _i ) = ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) ) | 
						
							| 53 | 52 | eqeq1d |  |-  ( f = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) -> ( ( f ` _i ) = 0 <-> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 ) ) | 
						
							| 54 | 53 | rspcev |  |-  ( ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` _i ) = 0 ) | 
						
							| 55 | 40 51 54 | mp2an |  |-  E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` _i ) = 0 | 
						
							| 56 |  | elaa |  |-  ( _i e. AA <-> ( _i e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` _i ) = 0 ) ) | 
						
							| 57 | 1 55 56 | mpbir2an |  |-  _i e. AA |