Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
cnex |
|- CC e. _V |
3 |
2
|
a1i |
|- ( T. -> CC e. _V ) |
4 |
|
sqcl |
|- ( z e. CC -> ( z ^ 2 ) e. CC ) |
5 |
4
|
adantl |
|- ( ( T. /\ z e. CC ) -> ( z ^ 2 ) e. CC ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
6
|
a1i |
|- ( ( T. /\ z e. CC ) -> 1 e. CC ) |
8 |
|
eqidd |
|- ( T. -> ( z e. CC |-> ( z ^ 2 ) ) = ( z e. CC |-> ( z ^ 2 ) ) ) |
9 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( z e. CC |-> 1 ) |
10 |
9
|
a1i |
|- ( T. -> ( CC X. { 1 } ) = ( z e. CC |-> 1 ) ) |
11 |
3 5 7 8 10
|
offval2 |
|- ( T. -> ( ( z e. CC |-> ( z ^ 2 ) ) oF + ( CC X. { 1 } ) ) = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ) |
12 |
|
zsscn |
|- ZZ C_ CC |
13 |
|
1z |
|- 1 e. ZZ |
14 |
|
2nn0 |
|- 2 e. NN0 |
15 |
|
plypow |
|- ( ( ZZ C_ CC /\ 1 e. ZZ /\ 2 e. NN0 ) -> ( z e. CC |-> ( z ^ 2 ) ) e. ( Poly ` ZZ ) ) |
16 |
12 13 14 15
|
mp3an |
|- ( z e. CC |-> ( z ^ 2 ) ) e. ( Poly ` ZZ ) |
17 |
16
|
a1i |
|- ( T. -> ( z e. CC |-> ( z ^ 2 ) ) e. ( Poly ` ZZ ) ) |
18 |
|
plyconst |
|- ( ( ZZ C_ CC /\ 1 e. ZZ ) -> ( CC X. { 1 } ) e. ( Poly ` ZZ ) ) |
19 |
12 13 18
|
mp2an |
|- ( CC X. { 1 } ) e. ( Poly ` ZZ ) |
20 |
19
|
a1i |
|- ( T. -> ( CC X. { 1 } ) e. ( Poly ` ZZ ) ) |
21 |
|
zaddcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
22 |
21
|
adantl |
|- ( ( T. /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x + y ) e. ZZ ) |
23 |
17 20 22
|
plyadd |
|- ( T. -> ( ( z e. CC |-> ( z ^ 2 ) ) oF + ( CC X. { 1 } ) ) e. ( Poly ` ZZ ) ) |
24 |
11 23
|
eqeltrrd |
|- ( T. -> ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( Poly ` ZZ ) ) |
25 |
24
|
mptru |
|- ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( Poly ` ZZ ) |
26 |
|
0cn |
|- 0 e. CC |
27 |
|
sq0i |
|- ( z = 0 -> ( z ^ 2 ) = 0 ) |
28 |
27
|
oveq1d |
|- ( z = 0 -> ( ( z ^ 2 ) + 1 ) = ( 0 + 1 ) ) |
29 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
30 |
28 29
|
eqtrdi |
|- ( z = 0 -> ( ( z ^ 2 ) + 1 ) = 1 ) |
31 |
|
eqid |
|- ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) |
32 |
|
1ex |
|- 1 e. _V |
33 |
30 31 32
|
fvmpt |
|- ( 0 e. CC -> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) = 1 ) |
34 |
26 33
|
ax-mp |
|- ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) = 1 |
35 |
|
ax-1ne0 |
|- 1 =/= 0 |
36 |
34 35
|
eqnetri |
|- ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) =/= 0 |
37 |
|
ne0p |
|- ( ( 0 e. CC /\ ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` 0 ) =/= 0 ) -> ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) =/= 0p ) |
38 |
26 36 37
|
mp2an |
|- ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) =/= 0p |
39 |
|
eldifsn |
|- ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( Poly ` ZZ ) /\ ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) =/= 0p ) ) |
40 |
25 38 39
|
mpbir2an |
|- ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) |
41 |
|
oveq1 |
|- ( z = _i -> ( z ^ 2 ) = ( _i ^ 2 ) ) |
42 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
43 |
41 42
|
eqtrdi |
|- ( z = _i -> ( z ^ 2 ) = -u 1 ) |
44 |
43
|
oveq1d |
|- ( z = _i -> ( ( z ^ 2 ) + 1 ) = ( -u 1 + 1 ) ) |
45 |
|
neg1cn |
|- -u 1 e. CC |
46 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
47 |
6 45 46
|
addcomli |
|- ( -u 1 + 1 ) = 0 |
48 |
44 47
|
eqtrdi |
|- ( z = _i -> ( ( z ^ 2 ) + 1 ) = 0 ) |
49 |
|
c0ex |
|- 0 e. _V |
50 |
48 31 49
|
fvmpt |
|- ( _i e. CC -> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 ) |
51 |
1 50
|
ax-mp |
|- ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 |
52 |
|
fveq1 |
|- ( f = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) -> ( f ` _i ) = ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) ) |
53 |
52
|
eqeq1d |
|- ( f = ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) -> ( ( f ` _i ) = 0 <-> ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 ) ) |
54 |
53
|
rspcev |
|- ( ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( z e. CC |-> ( ( z ^ 2 ) + 1 ) ) ` _i ) = 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` _i ) = 0 ) |
55 |
40 51 54
|
mp2an |
|- E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` _i ) = 0 |
56 |
|
elaa |
|- ( _i e. AA <-> ( _i e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` _i ) = 0 ) ) |
57 |
1 55 56
|
mpbir2an |
|- _i e. AA |