Description: Introduction of antecedent as conjunct. Theorem *4.73 of WhiteheadRussell p. 121. (Contributed by NM, 30-Mar-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | iba | |- ( ph -> ( ps <-> ( ps /\ ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 | |- ( ph -> ( ps -> ( ps /\ ph ) ) ) |
|
2 | simpl | |- ( ( ps /\ ph ) -> ps ) |
|
3 | 1 2 | impbid1 | |- ( ph -> ( ps <-> ( ps /\ ph ) ) ) |