Description: Introduction of antecedent as conjunct. Theorem *4.73 of WhiteheadRussell p. 121. (Contributed by NM, 30-Mar-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iba | |- ( ph -> ( ps <-> ( ps /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 | |- ( ph -> ( ps -> ( ps /\ ph ) ) ) |
|
| 2 | simpl | |- ( ( ps /\ ph ) -> ps ) |
|
| 3 | 1 2 | impbid1 | |- ( ph -> ( ps <-> ( ps /\ ph ) ) ) |